題目列表(包括答案和解析)
第六部分 振動和波
第一講 基本知識介紹
《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。
一、簡諧運動
1、簡諧運動定義:= -k
①
凡是所受合力和位移滿足①式的質點,均可稱之為諧振子,如彈簧振子、小角度單擺等。
諧振子的加速度:= -
2、簡諧運動的方程
回避高等數學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。
依據:x = -mω2Acosθ= -mω2
對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:
mω2 = k
這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關規律。從圖1不難得出——
位移方程: = Acos(ωt + φ) ②
速度方程: = -ωAsin(ωt +φ) ③
加速度方程:= -ω2A cos(ωt +φ) ④
相關名詞:(ωt +φ)稱相位,φ稱初相。
運動學參量的相互關系:= -ω2
A =
tgφ= -
3、簡諧運動的合成
a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得
A = ,φ= arctg
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。
b、方向垂直、同頻率振動合成。當質點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經構成了質點在二維空間運動的軌跡參數方程,消去參數t后,得一般形式的軌跡方程為
+
-2
cos(φ2-φ1) = sin2(φ2-φ1)
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;
當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+
= 1 ,軌跡為橢圓,合運動不再是簡諧運動;
當φ2-φ1取其它值,軌跡將更為復雜,稱“李薩如圖形”,不是簡諧運動。
c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(
t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為
的“拍”現象。
4、簡諧運動的周期
由②式得:ω= ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以
T = 2π ⑤
5、簡諧運動的能量
一個做簡諧運動的振子的能量由動能和勢能構成,即
=
mv2 +
kx2 =
kA2
注意:振子的勢能是由(回復力系數)k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復計量。
6、阻尼振動、受迫振動和共振
和高考要求基本相同。
二、機械波
1、波的產生和傳播
產生的過程和條件;傳播的性質,相關參量(決定參量的物理因素)
2、機械波的描述
a、波動圖象。和振動圖象的聯系
b、波動方程
如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質點的振動方程便是
y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t -
)+ φ〕
這個方程展示的是一個復變函數。對任意一個時刻t ,都有一個y(x)的正弦函數,在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。
3、波的干涉
a、波的疊加。幾列波在同一介質種傳播時,能獨立的維持它們的各自形態傳播,在相遇的區域則遵從矢量疊加(包括位移、速度和加速度的疊加)。
b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質中的疊加將形成一種特殊形態:振動加強的區域和振動削弱的區域穩定分布且彼此隔開。
我們可以用波程差的方法來討論干涉的定量規律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。
當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是
y1′= A1cos〔ω(t ? )〕
y2′= A2cos〔ω(t ? )〕
P點便出現兩個頻率相同、初相不同的振動疊加問題(φ1 = ,φ2 =
),且初相差Δφ=
(r2 – r1)。根據前面已經做過的討論,有
r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 ;
r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。
4、波的反射、折射和衍射
知識點和高考要求相同。
5、多普勒效應
當波源或者接受者相對與波的傳播介質運動時,接收者會發現波的頻率發生變化。多普勒效應的定量討論可以分為以下三種情況(在討論中注意:波源的發波頻率f和波相對介質的傳播速度v是恒定不變的)——
a、只有接收者相對介質運動(如圖3所示)
設接收者以速度v1正對靜止的波源運動。
如果接收者靜止在A點,他單位時間接收的波的個數為f ,
當他迎著波源運動時,設其在單位時間到達B點,則= v1 ,、
在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波
n = =
=
顯然,在單位時間內,接收者接收到的總的波的數目為:f + n = f ,這就是接收者發現的頻率f1 。即
f1 = f
顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。
b、只有波源相對介質運動(如圖4所示)
設波源以速度v2正對靜止的接收者運動。
如果波源S不動,在單位時間內,接收者在A點應接收f個波,故S到A的距離:= fλ
在單位時間內,S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長
λ′= =
=
=
而每個波在介質中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變為
f2 = =
f
當v2背離接收者,或有一定夾角的討論,類似a情形。
c、當接收者和波源均相對傳播介質運動
當接收者正對波源以速度v1(相對介質速度)運動,波源也正對接收者以速度v2(相對介質速度)運動,我們的討論可以在b情形的過程上延續…
f3 =
f2 =
f
關于速度方向改變的問題,討論類似a情形。
6、聲波
a、樂音和噪音
b、聲音的三要素:音調、響度和音品
c、聲音的共鳴
第二講 重要模型與專題
一、簡諧運動的證明與周期計算
物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。
模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復力與位移關系是否滿足定義式①,值得注意的是,回復力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復力系數k就有了,求周期就是順理成章的事。
本題中,可設汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復力
ΣF = ρg2xS = x
由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。
周期T = 2π= 2π
答:汞柱的周期為2π 。
學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉動,在滾輪上覆蓋一塊均質的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。
思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結合求兩處彈力→ú求摩擦力合力…
答案:木板運動周期為2π 。
鞏固應用:如圖7所示,三根長度均為L = 2.00m地質量均勻直桿,構成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉軸轉動。桿AB是一導軌,一電動松鼠可在導軌上運動,F觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。
解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設松鼠的質量為m ,即:
N = mg ①
再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:
MN = Mf
現考查松鼠在框架上的某個一般位置(如圖7,設它在導軌方向上距C點為x),上式即成:
N·x = f·Lsin60° ②
解①②兩式可得:f = x ,且f的方向水平向左。
根據牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關系——
= -k
其中k = ,對于這個系統而言,k是固定不變的。
顯然這就是簡諧運動的定義式。
答案:松鼠做簡諧運動。
評說:這是第十三屆物理奧賽預賽試題,問法比較模糊。如果理解為定性求解,以上答案已經足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π
= 2.64s 。
二、典型的簡諧運動
1、彈簧振子
物理情形:如圖8所示,用彈性系數為k的輕質彈簧連著一個質量為m的小球,置于傾角為θ
2 |
第七部分 熱學
熱學知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學——前五部分——的知識點數目相等)。而且,由于高考要求對熱學的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態方程都沒有了),這就客觀上給奧賽培訓增加了負擔。因此,本部分只能采新授課的培訓模式,將知識點和例題講解及時地結合,爭取讓學員學一點,就領會一點、鞏固一點,然后再層疊式地往前推進。
一、分子動理論
1、物質是由大量分子組成的(注意分子體積和分子所占據空間的區別)
對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關。
【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。
【解說】題意所求即圖中任意一個小立方塊的變長(設為a)的倍,所以求a成為本題的焦點。
由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據空間為 v =
而由圖不難看出,一個離子占據的空間就是小立方體的體積a3 ,
即 a3 = =
,最后,鄰近鈉離子之間的距離l =
a
【答案】3.97×10-10m 。
〖思考〗本題還有沒有其它思路?
〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 =
分子,所以…(此法普遍適用于空間點陣比較復雜的晶體結構。)
2、物質內的分子永不停息地作無規則運動
固體分子在平衡位置附近做微小振動(振幅數量級為0.1),少數可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數量級為102m/s)。
無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統計有序(分子數比率和速率對應一定的規律——如麥克斯韋速率分布函數,如圖6-2所示);b、劇烈程度和溫度相關。
氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內分子數,N表示分子總數)極大時的速率,vP =
=
;平均速率
:所有分子速率的算術平均值,
=
=
;方均根速率
:與分子平均動能密切相關的一個速率,
=
=
〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =
= 1.38×10-23J/K 〕
【例題2】證明理想氣體的壓強P = n
,其中n為分子數密度,
為氣體分子平均動能。
【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。
考查yoz平面的一個容器壁,P = ①
設想在Δt時間內,有Nx個分子(設質量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據動量定理,容器壁承受的壓力
F ==
②
在氣體的實際狀況中,如何尋求Nx和vx呢?
考查某一個分子的運動,設它的速度為v ,它沿x、y、z三個方向分解后,滿足
v2 = +
+
分子運動雖然是雜亂無章的,但仍具有“偶然無序和統計有序”的規律,即
=
+
+
= 3
③
這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設Δt = ,則
Nx = ·3N總 =
na3 ④
注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。
結合①②③④式不難證明題設結論。
〖思考〗此題有沒有更簡便的處理方法?
〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N總 =
na3 ;而且vx = v
所以,P = =
=
=
nm
=
n
3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。
分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關系如圖6-4所示。
分子勢能和動能的總和稱為物體的內能。
二、熱現象和基本熱力學定律
1、平衡態、狀態參量
a、凡是與溫度有關的現象均稱為熱現象,熱學是研究熱現象的科學。熱學研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學系統(簡稱系統)。當系統的宏觀性質不再隨時間變化時,這樣的狀態稱為平衡態。
b、系統處于平衡態時,所有宏觀量都具有確定的值,這些確定的值稱為狀態參量(描述氣體的狀態參量就是P、V和T)。
c、熱力學第零定律(溫度存在定律):若兩個熱力學系統中的任何一個系統都和第三個熱力學系統處于熱平衡狀態,那么,這兩個熱力學系統也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態的所有的熱力學系統都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統的狀態所決定的一個數值相等的狀態函數,這個狀態函數被定義為溫度。
2、溫度
a、溫度即物體的冷熱程度,溫度的數值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學溫標T(T = t + 273.15)。
b、(理想)氣體溫度的微觀解釋: =
kT (i為分子的自由度 = 平動自由度t + 轉動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質分子平均動能的標志。
c、熱力學第三定律:熱力學零度不可能達到。(結合分子動理論的觀點2和溫度的微觀解釋很好理解。)
3、熱力學過程
a、熱傳遞。熱傳遞有三種方式:傳導(對長L、橫截面積S的柱體,Q = KSΔ
第十部分 磁場
第一講 基本知識介紹
《磁場》部分在奧賽考剛中的考點很少,和高考要求的區別不是很大,只是在兩處有深化:a、電流的磁場引進定量計算;b、對帶電粒子在復合場中的運動進行了更深入的分析。
一、磁場與安培力
1、磁場
a、永磁體、電流磁場→磁現象的電本質
b、磁感強度、磁通量
c、穩恒電流的磁場
*畢奧-薩伐爾定律(Biot-Savart law):對于電流強度為I 、長度為dI的導體元段,在距離為r的點激發的“元磁感應強度”為dB 。矢量式d= k
,(d
表示導體元段的方向沿電流的方向、
為導體元段到考查點的方向矢量);或用大小關系式dB = k
結合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應用畢薩定律再結合矢量疊加原理,可以求解任何形狀導線在任何位置激發的磁感強度。
畢薩定律應用在“無限長”直導線的結論:B = 2k ;
*畢薩定律應用在環形電流垂直中心軸線上的結論:B = 2πkI ;
*畢薩定律應用在“無限長”螺線管內部的結論:B = 2πknI 。其中n為單位長度螺線管的匝數。
2、安培力
a、對直導體,矢量式為 = I
;或表達為大小關系式 F = BILsinθ再結合“左手定則”解決方向問題(θ為B與L的夾角)。
b、彎曲導體的安培力
⑴整體合力
折線導體所受安培力的合力等于連接始末端連線導體(電流不變)的的安培力。
證明:參照圖9-1,令MN段導體的安培力F1與NO段導體的安培力F2的合力為F,則F的大小為
F =
= BI
= BI
關于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個證明很容易),故F在MO上的垂足就是MO的中點了。
證畢。
由于連續彎曲的導體可以看成是無窮多元段直線導體的折合,所以,關于折線導體整體合力的結論也適用于彎曲導體。(說明:這個結論只適用于勻強磁場。)
⑵導體的內張力
彎曲導體在平衡或加速的情形下,均會出現內張力,具體分析時,可將導體在被考查點切斷,再將被切斷的某一部分隔離,列平衡方程或動力學方程求解。
c、勻強磁場對線圈的轉矩
如圖9-2所示,當一個矩形線圈(線圈面積為S、通以恒定電流I)放入勻強磁場中,且磁場B的方向平行線圈平面時,線圈受安培力將轉動(并自動選擇垂直B的中心軸OO′,因為質心無加速度),此瞬時的力矩為
M = BIS
幾種情形的討論——
⑴增加匝數至N ,則 M = NBIS ;
⑵轉軸平移,結論不變(證明從略);
⑶線圈形狀改變,結論不變(證明從略);
*⑷磁場平行線圈平面相對原磁場方向旋轉α角,則M = BIScosα ,如圖9-3;
證明:當α = 90°時,顯然M = 0 ,而磁場是可以分解的,只有垂直轉軸的的分量Bcosα才能產生力矩…
⑸磁場B垂直OO′軸相對線圈平面旋轉β角,則M = BIScosβ ,如圖9-4。
證明:當β = 90°時,顯然M = 0 ,而磁場是可以分解的,只有平行線圈平面的的分量Bcosβ才能產生力矩…
說明:在默認的情況下,討論線圈的轉矩時,認為線圈的轉軸垂直磁場。如果沒有人為設定,而是讓安培力自行選定轉軸,這時的力矩稱為力偶矩。
二、洛侖茲力
1、概念與規律
a、 = q
,或展開為f = qvBsinθ再結合左、右手定則確定方向(其中θ為
與
的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現。
b、能量性質
由于總垂直
與
確定的平面,故
總垂直
,只能起到改變速度方向的作用。結論:洛侖茲力可對帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭恿堪l生改變卻不能使其動能發生改變。
問題:安培力可以做功,為什么洛侖茲力不能做功?
解說:應該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現”這句話的確切含義——“宏觀體現”和“完全相等”是有區別的。我們可以分兩種情形看這個問題:(1)導體靜止時,所有粒子的洛侖茲力的合力等于安培力(這個證明從略);(2)導體運動時,粒子參與的是沿導體棒的運動v1和導體運動v2的合運動,其合速度為v ,這時的洛侖茲力f垂直v而安培力垂直導體棒,它們是不可能相等的,只能說安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。
很顯然,f1的合力(安培力)做正功,而f不做功(或者說f1的正功和f2的負功的代數和為零)。(事實上,由于電子定向移動速率v1在10?5m/s數量級,而v2一般都在10?2m/s數量級以上,致使f1只是f的一個極小分量。)
☆如果從能量的角度看這個問題,當導體棒放在光滑的導軌上時(參看圖9-6),導體棒必獲得動能,這個動能是怎么轉化來的呢?
若先將導體棒卡住,回路中形成穩恒的電流,電流的功轉化為回路的焦耳熱。而將導體棒釋放后,導體棒受安培力加速,將形成感應電動勢(反電動勢)。動力學分析可知,導體棒的最后穩定狀態是勻速運動(感應電動勢等于電源電動勢,回路電流為零)。由于達到穩定速度前的回路電流是逐漸減小的,故在相同時間內發的焦耳熱將比導體棒被卡住時少。所以,導體棒動能的增加是以回路焦耳熱的減少為代價的。
2、僅受洛侖茲力的帶電粒子運動
a、⊥
時,勻速圓周運動,半徑r =
,周期T =
b、與
成一般夾角θ時,做等螺距螺旋運動,半徑r =
,螺距d =
這個結論的證明一般是將分解…(過程從略)。
☆但也有一個問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運動情形似乎就不一樣了——在垂直B2的平面內做圓周運動?
其實,在圖9-7中,B1平行v只是一種暫時的現象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當B1施加了洛侖茲力后,粒子的“圓周運動”就無法達成了。(而在分解v的處理中,這種局面是不會出現的。)
3、磁聚焦
a、結構:見圖9-8,K和G分別為陰極和控制極,A為陽極加共軸限制膜片,螺線管提供勻強磁場。
b、原理:由于控制極和共軸膜片的存在,電子進磁場的發散角極小,即速度和磁場的夾角θ極小,各粒子做螺旋運動時可以認為螺距彼此相等(半徑可以不等),故所有粒子會“聚焦”在熒光屏上的P點。
4、回旋加速器
a、結構&原理(注意加速時間應忽略)
b、磁場與交變電場頻率的關系
因回旋周期T和交變電場周期T′必相等,故 =
c、最大速度 vmax = = 2πRf
5、質譜儀
速度選擇器&粒子圓周運動,和高考要求相同。
第二講 典型例題解析
一、磁場與安培力的計算
【例題1】兩根無限長的平行直導線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導線之間且在兩導線所在平面內的、與a導線相距10cm的P點的磁感強度。
【解說】這是一個關于畢薩定律的簡單應用。解題過程從略。
【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。
【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強度大小為B 、方向垂直線圈平面的勻強磁場中,求由于安培力而引起的線圈內張力。
【解說】本題有兩種解法。
方法一:隔離一小段弧,對應圓心角θ ,則弧長L = θR 。因為θ →
百度分享
一個有一定厚度的圓盤,可以繞通過中心垂直于盤面的水平軸轉動,用下面的方法測量它勻速轉動時的角速度。
實驗器材:電磁打點計時器、米尺、紙帶、復寫紙片。
實驗步驟:
(1)如圖1所示,將電磁打點計時器固定在桌面上,將紙帶的一端穿過打點計時器的限位孔后,固定在待測圓盤的側面上,使得圓盤轉動時,紙帶可以卷在圓盤側面上。
(2)啟動控制裝置使圓盤轉動,同時接通電源,打點計時器開始打點。
(3)經過一段時間,停止轉動和打點,取下紙帶,進行測量。
① 由已知量和測得量表示的角速度的表達式為ω= 。式中各量的意義是:
.
② 某次實驗測得圓盤半徑r=5.50×10-2m,得到紙帶的一段如圖2所示,求得角速度為 。
(1) (2)6.8/s。 |
典型例題
[例1] 解析:對系統進行整體分析,受力分析如圖1―2:
由平衡條件有:
由此解得
[例2] 解析: (1)設t1、t2為聲源S發出兩個信號的時刻,為觀察者接收到兩個信號的時刻.則第一個信號經過
時間被觀察者A接收到,第二個信號經過(
)時刻被觀察者A接收到,且
![]() |
|||
![]() |
|||
設聲源發出第一個信號時,S、A兩點間的距離為L,兩個聲信號從聲源傳播到觀察者的過程中,它們的運動的距離關系如圖所示,
可得
由以上各式解得
(2)設聲源發出聲波的振動周期為T,這樣,由以上結論,觀察者接收到的聲波振動的周期T′,.
由此可得,觀察者接收到的聲波頻率與聲源發出聲波頻率間的關系為
.
[例3] 解答:根據題意作圖1―4.
對這兩個天體而言,它們的運動方程分別為 ①
②
以及
③
由以上三式解得.
將r1和r2的表達式分別代①和②式,
可得.
[例4] 解答:(1)A、B兩球以相同的初速度v0,從同一點水平拋出,可以肯定它們沿同一軌道運動.
作細線剛被拉直時刻A、B球位置示意圖1―5.
根據題意可知:
設A球運動時間為t,則B球運動時間為t-0.8,由于A、B球在豎直方向上均作自由落體運動,所以有.
由此解得t =1s.
(2)細線剛被拉直時,
A、B球的水平位移分別為
[例5] 解答:(1)A球通過最低點時,作用于環形圓管的壓力豎直向下,根據牛頓第三定律,A球受到豎直向上的支持力N1,由牛頓第二定律,有:
①
由題意知,A球通過最低點時,B球恰好通過最高點,而且該時刻A、B兩球作用于圓管的合力為零;可見B球作用于圓管的壓力肯定豎直向上,根據牛頓第三定律,圓管對B球的反作用力N2豎直向下;假設B球通過最高點時的速度為v,則B球在該時刻的運動方程為 ②
由題意N1=N2 ③
∴
④
對B球運用機械能守恒定律
⑤
解得
⑥
⑥式代入④式可得:.
[例6] 解答:火箭上升到最高點的運動分為兩個階段:勻加速上升階段和豎直上拋階段.
地面上的擺鐘對兩個階段的計時為
即總的讀數(計時)為t =t1+t2=360(s)
放在火箭中的擺鐘也分兩個階段計時.
第一階段勻加速上升,a=8g,鐘擺周期
其鐘面指示時間
第二階段豎直上拋,為勻減速直線運動,加速度豎直向下,a=g,完全失重,擺鐘不“走”,計時.可見放在火箭中的擺鐘總計時為
.
綜上所述,火箭中的擺鐘比地面上的擺鐘讀數少了.
[例7] 解答:在情形(1)中,滑塊相對于桌面以速度v0=0.1m/s向右做勻速運動,放手后,木板由靜止開始向右做勻加速運動.
經時間t,木板的速度增大到v0=0.1m/s,.
在5s內滑塊相對于桌面向右的位移大小為S1=v0t=0.5m.
而木板向右相對于桌面的位移為.
可見,滑塊在木板上向右只滑行了S1-S2=0.25m,即達到相對靜止狀態,隨后,它們一起以共同速度v0向右做勻速直線運動.只要線足夠長,桌上的柱子不阻擋它們運動,滑塊就到不了木板的右端.
在情形(2)中,滑塊與木板組成一個系統,放手后滑塊相樹于木板的速度仍為v0,滑塊到達木板右端歷時.
[例8] 解答:以m表示球的質量,F表示兩球相互作用的恒定斥力,l表示兩球間的原始距離.A球作初速度為v0的勻減速運動,B球作初速度為零的勻加速運動.在兩球間距由l先減小,到又恢復到l的過程中,A球的運動路程為l1,B球運動路程為l2,間距恢復到l時,A球速度為v1,B球速度為v2.
由動量守恒,有
由功能關系:A球
B球:
根據題意可知l1=l2,
由上三式可得
得v2=v0、v1=0 即兩球交換速度.
當兩球速度相同時,兩球間距最小,設兩球速度相等時的速度為v,
則
B球的速度由增加到v0花時間t0,即
得.
解二:用牛頓第二定律和運動學公式.(略)
跟蹤練習
1.C 提示:利用平衡條件.
2.(1)重物先向下做加速運動,后做減速運動,當重物速度為零時,下降的距離最大,設下降的最大距離為h,
由機械能守恒定律得 解得
.
(2)系統處于平衡狀態時,兩小環的可能位置為
a.兩小環同時位于大圓環的底端
b.兩小環同時位于大圓環的頂端
c.兩小環一個位于大圓環的頂端,另一個位于大圓環的底端
d.除上述三種情況外,根據對稱性可知,系統如能平衡,則小圓環的位置一定關于大圓環豎直對稱軸對稱.設平衡時,兩小圓環在大圓環豎直對稱軸兩側角的位置上(如圖).
對于重物m,受繩的拉力T與重力mg作用,有T=mg.對于小圓環,受到三個力的作用,水平繩的拉力T,豎直繩的拉力T,大圓環的支持力N.兩繩的拉力沿大圓環切向的分力大小相等,方向相反.
得.
3.設測速儀掃描速度為v′,因P1、P2在標尺上對應間隔為30小格,所以格/s.
測速儀發出超聲波信號P1到接收P1的反射信號n1.從圖B上可以看出,測速儀掃描12小格,所以測速儀從發出信號P1到接收其反射信號n1所經歷時間.
汽車接收到P1信號時與測速儀相距.
同理,測速儀從發出信號P2到接收到其反射信號n2,測速儀掃描9小格,故所經歷時間.汽車在接收到P2信號時與測速儀相距
.
所以,汽車在接收到P1、P2兩個信號的時間內前進的距離△S=S1-S2=17m.
從圖B可以看出,n1與P2之間有18小格,所以,測速儀從接收反射信號n1到超聲信號P2的時間間隔.
所以汽車接收P1、P2兩個信號之間的時間間隔為.
∴汽車速度m/s.
4.從B發出第一個超聲波開始計時,經被C車接收.故C車第一次接收超聲波時與B距離
.
第二個超聲波從發出至接收,經T+△T時間,C車第二車接收超聲波時距B為,C車從接收第一個超聲波到接收第二個超聲波內前進S2-S1,接收第一個超聲波時刻
,接收第二個超聲波時刻為
.
所以接收第一和第二個超聲波的時間間距為.
故車速.車向右運動.
5.ACD
6.(1)根據動能定理,可求出衛星由近地點到遠地點運動過程中,地球引力對衛星的功為.
(2)由牛頓第二定律知 ∴
7.(1)建立如圖所示坐標系,將v0與g進行正交分解.
在x方向,小球以為初速度作勻加速運動.
在y方向,小球以為初速度,作類豎直上拋運動.
當y方向的速度為零時,小球離斜面最遠,由運動學公式.
小球經時間t上升到最大高度,由得
.
(2)
8.(1)設滑雪者質量為m,斜面與水平面夾角為,滑雪者滑行過程中克服摩擦力做功
①
由動能定理 ②
離開B點時的速度
③
(2)設滑雪者離開B點后落在臺階上
可解得 ④
此時必須滿足
⑤
當時,滑雪者直接落到地面上,
,
可解得.
9.AC
10.擺球先后以正方形的頂點為圓心,半徑分別為R1=4a,R2=3a,R3=2a,R4=a為半徑各作四分之一圓周的圓運動.
當擺球從P點開始,沿半徑R1=4a運動到最低點時的速度v1,
根據動量定理 ①
當擺球開始以v1繞B點以半徑R2=3a作圓周運動時,擺線拉力最大,為Tmax=7mg,這時擺球的運動方程為 ②
由此求得v0的最大許可值為.
當擺球繞C點以半徑R3=2a運動到最高點時,為確保沿圓周運動,
到達最高點時的速度(重力作向心力)
由動能定理
∴
11.B
12.由題意知,周期為.波速
.
P、Q兩點距離相差次全振動所需時間即
∴.
13.ABC 開始時小車上的物體受彈簧水平向右的拉力為6N,水平向左的靜摩擦力也為6N,合力為零.沿水平向右方向對小車施加以作用力,小車向右做加速運動時,車上的物體沿水平向右方向上的合力(F=ma)逐漸增大到8N后恒定.在此過程中向左的靜摩擦力先減小,改變方向后逐漸增大到(向右的)2N而保持恒定;彈簧的拉力(大小、方向)始終沒有變,物體與小車保持相對靜止,小車上的物體不受摩擦力作用時,向右的加速度由彈簧的拉力提供:.
14.(1)設物體與板的位移分別為S物、S板,則由題意有 ①
② 解得:
.
(2)由.
得,故板與桌面之間的動摩擦因數
.
15.在0~10s內,物體的加速度(正向)
在10~14s內,物體的加速度 (反向)
由牛頓第二定律 ①
②
由此解得F=8.4N =0.34
16.(1)依題意得=0,設小滑塊在水平面上運動的加速度大小為a,
由牛頓第二定律,,由運動學公式
,解得
.
(2)滑塊在水平面上運動時間為t1,由.
在斜面上運動的時間
(3)若滑塊在A點速度為v1=5m/s,則運動到B點的速度.
即運動到B點后,小滑塊將做平拋運動.
假設小滑塊不會落到斜面上,則經過落到水平面上,
則水平位移.
所以假設正確,即小滑塊從A點運動到地面所需時間為.
專題二 動量與機械能
典型例題
[例1] D
解析:本題辨析一對平衡力和一對作用力和反作用力的功、沖量.因為,一對平衡力大小相等、方向相反,作用在同一物體上,所以,同一段時間內,它們的沖量大小相等、方向相反,故不是相同的沖量,則①錯誤.如果在同一段時間內,一對平衡力做功,要么均為零(靜止),要么大小相等符號相反(正功與負功),故②正確.至于一對作用力與反作用力,雖然兩者大小相等,方向相反,但分別作用在兩個不同物體上(對方物體),所以,即使在同樣時間內,力的作用點的位移不是一定相等的(子彈穿木塊中的一對摩擦力),則做功大小不一定相等.而且作功的正負號也不一定相反(點電荷間相互作用力、磁體間相互作用力的做功,都是同時做正功,或同時做負功.)因此③錯誤,④正確.綜上所述,選項D正確.
【例2】 解析:(1)飛機達到最大速度時牽引力F與其所受阻力f 大小相等,
由P=Fv得
(2)航空母艦上飛機跑道的最小長度為s,由動能定理得
將
代入上式得
或
【例3】 解析:解法1(程序法):
選物體為研究對象,在t1時間內其受力情況如圖①所示,選F的方向為正方向,根據牛頓第二定律,物體運動的加速度為.
![]() |
撤去F時物體的速度為v1=a1t1=2×6m/s=12m/s
撤去F后,物體做勻減速運動,其受力情況如圖②所示,根據牛頓第二定律,其運動的加速度為.
物體開始碰撞時的速度為v2=v1+a2t2=[12+(-2)×2]m/s=8m/s.
再研究物體碰撞的過程,設豎直墻對物體的平均作用力為,其方向水平向左.若選水平向左為正方向,根據動量定理有
.
解得.
解法2(全程考慮):取從物體開始運動到碰撞后反向彈回的全過程應用動量定理,并取F的方向為正方向,則
所以
點評:比較上述兩種方法看出,當物體所受各力的作用時間不相同且間斷作用時,應用動量定理解題對全程列式較簡單,這時定理中的合外力的沖量可理解為整個運動過程中各力沖量的矢量和.此題應用牛頓第二定律和運動學公式較繁瑣.
另外有些變力作用或曲線運動的題目用牛頓定律難以解決,應用動量定理解決可化難為易.
【例4】 解析:該題用守恒觀點和轉化觀點分別解答如下:
解法一:(守恒觀點)選小球為研究對象,設小球沿半徑為R的軌道做勻速圓周運動的線速度為v0,根據牛頓第二定律有 ①
當剪斷兩物體之間的輕線后,輕線對小球的拉力減小,不足以維持小球在半徑為R的軌道上繼續做勻速圓周運動,于是小球沿切線方向逐漸偏離原來的軌道,同時輕線下端的物體m1逐漸上升,且小球的線速度逐漸減。僭O物體m1上升高度為h,小球的線速度減為v時,小球在半徑為(R+h)的軌道上再次做勻速圓周運動,根據牛頓第二定律有
②
再選小球M、物體m1與地球組所的系統為研究對象,研究兩物體間的輕線剪斷后物體m1上升的過程,由于只有重力做功,所以系統的機械能守恒.選小球做勻速圓周運動的水平面為零勢面,設小球沿半徑為R的軌道做勻速圓周運動時m1到水平板的距離為H,根據機械能守恒定律有 ③
以上三式聯立解得
解法二:(轉化觀點)與解法一相同,首先列出①②兩式,然后再選小球、物體m1與地球組成的系統為研究對象,研究兩物體間的輕線剪斷后物體m1上升的過程,由于系統的機械能守恒,所以小球動能的減少量等于物體m1重力勢能的增加量.即
④
①、②、④式聯立解得
點評:比較上述兩種解法可以看出,根據機械能守恒定律應用守恒觀點列方程時,需要選零勢面和找出物體與零勢面的高度差,比較麻煩;如果應用轉化觀點列方程,則無需選零勢面,往往顯得簡捷.
【例5】 解析:(1)第一顆子彈射入木塊過程中動量守恒 ①
解得:=3m/s ②
木塊向右作減速運動加速度m/s2 ③
木塊速度減小為零所用時間
④
解得t1 =0.6s<1s ⑤
所以木塊在被第二顆子彈擊中前向右運動離A點最遠時,速度為零,移動距離為
解得s1=0.9m. ⑥
(2)在第二顆子彈射中木塊前,木塊再向左作加速運動,時間t2=1s-0.6s=0.4s ⑦
速度增大為v2=at2=2m/s(恰與傳送帶同速) ⑧
向左移動的位移為 ⑨
所以兩顆子彈射中木塊的時間間隔內,木塊總位移S0=S1-S2=0.5m方向向右 ⑩
第16顆子彈擊中前,木塊向右移動的位移為 11
第16顆子彈擊中后,木塊將會再向右先移動0.9m,總位移為0.9m+7.5=8.4m>8.3m木塊將從B端落下.
所以木塊在傳送帶上最多能被16顆子彈擊中.
(3)第一顆子彈擊穿木塊過程中產生的熱量為
12
木塊向右減速運動過程中板對傳送帶的位移為 13
產生的熱量為Q2=
14
木塊向左加速運動過程中相對傳送帶的位移為
15
產生的熱量為
16
第16顆子彈射入后木塊滑行時間為t3有 17
解得t3=0.4s 18
木塊與傳送帶的相對位移為S=v1t3+0.8 19
產生的熱量為Q4= 20
全過程中產生的熱量為Q=15(Q1+Q2+Q3)+Q1+Q4
解得Q=14155.5J 21
【例6】 解析:運動分析:當小車被擋住時,物體落在小車上沿曲面向下滑動,對小車有斜向下方的壓力,由于P的作用小車處于靜止狀態,物體離開小車時速度為v1,最終平拋落地,當去掉擋板,由于物對車的作用,小車將向左加速運動,動能增大,物體相對車滑動的同時,隨車一起向左移動,整個過程機械能守恒,物體滑離小車時的動能將比在前一種情況下小,最終平拋落地,小車同時向前運動,所求距離是物體平拋過程中的水平位移與小車位移的和.求出此種情況下,物體離開車時的速度v2,及此時車的速度以及相應運動的時間是關鍵,由于在物體與小車相互作用過程中水平方向動量守恒這是解決v2、
間關系的具體方法.
(1)擋住小車時,求物體滑落時的速度v1,物體從最高點下落至滑離小車時機械能守恒,設車尾部(右端)離地面高為h,則有, ①
由平拋運動的規律s0=v1t ②
. ③
(2)設去掉擋板時物體離開小車時速度為v2,小車速度為,物體從最高點至離開小車之時系統機械能守恒
④
物體與小車相互作用過程中水平方向動量守恒. ⑤
此式不僅給出了v2與大小的關系,同時也說明了v2是向右的.
物體離開車后對地平拋 ⑥
⑦
車在時間內向前的位移
⑧
比較式⑦、③,得解式①、④、⑤,得
.
此種情況下落地點距車右端的距離
.
點評:此題解題過程運用了機械能守恒、動量守恒及平拋運動的知識,另外根據動量守恒判斷m離車時速度的方向及速度間的關系也是特別重要的.
【例7】 解析:(1)設第一次碰墻壁后,平板車向左移動s,速度為0.由于體系總動量向右,平板車速度為零時,滑塊還在向右滑行.
由動能定理 ①
②
代入數據得
③
(3)假如平板車在第二次碰撞前還未和滑塊相對靜止,那么其速度的大小肯定還是2m/s,滑塊的速度則大于2m/s,方向均向右.這樣就違反動量守恒.所以平板車在第二次碰撞前肯定已和滑塊具有共同速度v.此即平板車碰墻前瞬間的速度.
④
∴
⑤
代入數據得 ⑥
(3)平板車與墻壁第一次碰撞后到滑塊與平板又達到共同速度v前的過程,可用圖(a)(b)(c)表示.(a)為平板車與墻壁撞后瞬間滑塊與平板車的位置,圖(b)為平板車到達最左端時兩者的位置,圖(c)為平板車與滑塊再次達到共同速度為兩者的位置.在此過程中滑塊動能減少等于摩擦力對滑塊所做功
,平板車動能減少等于摩擦力對平板車所做功
(平板車從B到A再回到B的過程中摩擦力做功為零),其中
、
分別為滑塊和平板車的位移.滑塊和平板車動能總減少為
其中
為滑塊相對平板車的位移.此后,平板車與墻壁發生多次碰撞,每次情況與此類似,最后停在墻邊.設滑塊相對平板車總位移為l,則有
⑦
⑧
代入數據得
⑨
l即為平板車的最短長度.
【例8】 解析:本題應用動量守恒,機械能守恒及能量守恒定律聯合求解。
在m下落在砂箱砂里的過程中,由于車與小泥球m在水平方向不受任何外力作用,故車及砂、泥球整個系統的水平方向動量守恒,則有:
①
此時物塊A由于不受外力作用,繼續向右做勻速直線運動再與輕彈簧相碰,以物塊A、彈簧、車系統為研究對象,水平方向仍未受任何外力作用,系統動量守恒,當彈簧被壓縮到最短,達最大彈性勢能Ep時,整個系統的速度為v2,則由動量守恒和機械能守恒有:
②
③
由①②③式聯立解得:
④
之后物塊A相對地面仍向右做變減速運動,而相對車則向車的左面運動,直到脫離彈簧,獲得對車向左的動能,設剛滑至車尾,則相對車靜止,由能量守恒,彈性勢能轉化為系統克服摩擦力做功轉化的內能有: ⑤
由④⑤兩式得:
跟蹤練習
1.【答案】 D
【解析】 在△t1時間內,I1=F△t1=mv=△p1,在△t2時間內.I2=F△t2=2mv-mv=mv=△p2 ∴I1=I2
又
∴W1<W2,D選項正確.
【說明】 物體在恒定的合外力F作用下做直線運動,由牛頓第二定律可知物體做勻加速直線運動,速度由零增大到v的時間△t2和由v增大到2v的時間△t2是相等的,所以在△t1和△t2的兩段時間內合外力的沖量是相等的.在△t1的平均速度小于△t2時間內的平均速度,從而得出在△t1內的位移小于在△t2時間的位移,恒力F所做的功W1<W2.D選項正確.
2.【答案】 C
【解析】 無論子彈射入的深度如何,最終子彈和木塊都等速,由動量守恒定律知,兩種情況最終兩木塊(包括子彈)速度都相等.對木塊由動能定理知:兩次子彈對木塊做功一樣多.由動量定理知:兩次木塊所受沖量一樣大.對系統由能的轉化和守恒定律知,兩次損失的機械能一樣多,產生的熱量也一樣多.
3.【解析】 (1)物體由A滑到B的過程中,容器不脫離墻,物塊由B沿球面向上滑時,物塊對容器的作用力有一水平向右的分量,容器將脫離墻向右運動.因此,物塊由A→B動量變化量最大,受容器的沖量最大,豎直墻作用于容器的沖量也最大.
物塊由A→B機械能守恒,設物塊滑到B的速度為vB,則
∴ ①
物塊動量變化量方向沿水平方向.容器作用于物塊的沖量為
.
容器不動,墻對容器的沖量,方向水平向右,這是最大沖量.
(2)物塊從B處上升,容器向右運動過程中,系統水平方向動量守恒.物塊上升到最高處相對容器靜止的時刻,物塊與容器具有共同的水平速度,設它為v,則由動量守恒定律得 ②
系統機械能守恒 ③
聯立①②③式解得 M=3m
4.【解析】 設離子噴出尾噴管時的速度為v,單位時間內噴出n個離子,則△t時間內噴出離子數為n△t,由動量定理得
在發射離子過程中,衛星和發射出的離子系統,動量守恒,設噴出離子總質量為△m,則有△mv=(M-△m)v星 ∵△mm ∴v
.
5.【解析】 (1)設整個過程摩擦力做的功是W,由動能定理得:mgh-W=0 ①
W=mgh
(2)設物塊沿軌道AB滑動的加速度為a1,
由牛頓第二定律有 ②
設物塊到達B點時的速度為VB,則有VB=a1t1 ③
設物塊沿軌道BC滑動的加速度為a2,由牛頓第二定律有 ④
物塊從B點開始作勻減速運動,到達C點時,速度為零,故有 ⑤
由②③④⑤式可得: ⑥
(3)使物塊勻速地、緩慢地沿原路回到A點所需做的功應該是克服重力和阻力所做功之和,即是W1=mgh+W=2mgh
6.【解析】 (1)物體P從A下滑經B到C過程中根據動能定理:
經C點時
根據牛頓第三定律,P對C點的壓力
(2)從C到E機械能守恒
E與D間高度差
(3)物體P最后在B與其等高的圓弧軌道上來回運動時,經C點壓力最小,由B到C根據機械能守恒
根據牛頓第三定律 壓力
7.【解析】 物塊的運動可分為以下四個階段:①彈簧彈力做功階段;②離開彈簧后在AB段的勻速直線運動階段;③從B到C所進行的變速圓周運動階段;④離開C點后進行的平拋運動階段.彈簧彈力是變化的,求彈簧彈力的功可根據效果――在彈力作用下物塊獲得的機械能,即到達B點的動能求解.物塊從B至C克服阻力做的功也是變力,同樣只能根據B點和C點兩點的機械能之差判斷.因此求出物塊在B點和C點的動能是關鍵.可根據題設條件:“進入導軌瞬間對導軌的壓力為其重力的7倍”、“恰能到達C點”,求出.
物塊在B點時受力mg和導軌的支持力N=7mg,由牛頓第二定律,
有
∴
物塊到達C點僅受重力mg,根據牛頓第二定律,有
∴.
(1)根據動能定理,可求得彈簧彈力對物體所做的功為W彈=EkB=3mgR.
(2)物體從B到C只有重力和阻力做功,根據動能定理,
有
即物體從B到C克服阻力做的功為0.5mgR.
(3)物體離開軌道后做平拋運動,僅有重力做功,機械能守恒,
有.
評析:中學階段不要求直接用
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com