16.對于函數( )有下列命題: 查看更多

 

題目列表(包括答案和解析)

有下列命題:
①函數y=f (-x+2)與y=f (x-2)的圖象關于y軸對稱;
②若函數f(x)=ex,則?x1,x2∈R,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

③若函數f(x)=loga|x|(a>0,a≠1)在(0,+∞)上單調遞增,則f(-2)>f(a+1);
④若函數f(x+2010)=x2-2x-1(x∈R),則函數f(x)的最小值為-2.
其中真命題的序號是
 

查看答案和解析>>

有下列命題:①函數y=f(x+1)是偶函數,則函數y=f(x)的對稱軸方程為x=-1;②f(x)=
1-x2
+
x2-1
既是奇函數,又是偶函數;③奇函數的圖象必過原點;④已知函數f(x)=x2+bx+c對于任意實數t都有f(2+t)=f(2-t),則f(4),f(2),f(-2)由小到大的順序為f(4)<f(2)<f(-2).其中正確的序號為
 

查看答案和解析>>

有下列命題:①偶函數的圖象一定與y軸相交;
②奇函數的圖象一定經過原點;
③定義在R上的奇函數f(x)必滿足f(0)=0;
④當且僅當f(0)=0(定義域關于原點對稱)時,f(x)既是奇函數又是偶函數.
其中正確的命題有
 

查看答案和解析>>

有下列命題:①在函數y=cos(x-
π
4
)cos(x+
π
4
)
的圖象中,相鄰兩個對稱中心的距離為π;②函數y=
x+3
x-1
的圖象關于點(-1,1)對稱;③關于x的方程ax2-2ax-1=0有且僅有一個實數根,則實數a=-1;④已知命題p:對任意的x∈R,都有sinx≤1,則?p是:存在,使得sinx>1.其中所有真命題的序號是
 

查看答案和解析>>

有下列命題:
①函數y=2x與y=log2x互為反函數;
②函數y=
x2
與y=log22x是同一個函數;
③函數y=2x與y=2-x的圖象關于x軸對稱;
④函數y=
2x-2-x
2
是遞增的奇函數.
其中正確的是
 
.(把你認為正確的命題的序號都填上)

查看答案和解析>>

 

一、選擇題:BCDBA  BBDCB  AC

二、填空題:

13.100   14. 8或-18    15.     16.①②③④ 

三、解答題:

17解:(1)∵   , 且與向量所成角為

∴   ,   ∴  ,            

,∴  ,即。    

(2)由(1)可得:

 ∴  

∵  ,     ∴  ,

∴  ,  ∴  當=1時,A=   

∴AB=2,               則                        

18.解:(1)拿每個球的概率均為,兩球標號的和是3的倍數有下列4種情況:

(1,2),(1,5),(2,4),(3,6)每種情況的概率為:

所以所求概率為:  

(2)設拿出球的號碼是3的倍數的為事件A,則,,拿4次至少得2分包括2分和4分兩種情況。

,     

19.解:(Ⅰ)取BC中點O,連結AO.

為正三角形,

 連結,在正方形中,分別

的中點,

由正方形性質知

又在正方形中,

平面

(Ⅱ)設AB1與A1B交于點,在平面1BD中,

,連結,由(Ⅰ)得

為二面角的平面角.

中,由等面積法可求得

,

所以二面角的大小為

20.解:(1)由可得

兩式相減得

   故{an}是首項為1,公比為3得等比數列  

.

   (2)設{bn}的公差為d,由得,可得,可得,

        故可設

        又由題意可得解得

        ∵等差數列{bn}的各項為正,∴,∴ 

 ∴

21.解:;  ∴

⑴ 當時,

0

0

極大值

極小值

極小值

化為 ,∴

⑵ 當時,∴

;當

所以上的增函數無極小值

⑶ 當時,

0

0

極大值

極小值

極小值(舍去)

綜上                                                 

 

22.解:(1)如圖,建立平面直角坐標系,則D(-1,0)弦EF所在的直線方程為

設橢圓方程為

知:  聯立方程組  ,

消去x得:

      由題意知:

      由韋達定理知:

消去得:,化簡整理得:   解得:   

   即:橢圓的長軸長的取值范圍為

(2)若D為橢圓的焦點,則c=1,    由(1)知:  

      橢圓方程為:。

 


同步練習冊答案
久久精品免费一区二区视