在這三個視圖中.正確的有. (A)①② (B)①③ (C)②③ (D)② 查看更多

 

題目列表(包括答案和解析)

如圖1,過△ABC頂點A作BC邊上的高AD和中線AE,點D是垂足,點E是BC中點,規定λA=
DEBE
.特別地,當D、E重合時,規定λA=0.另外對λB、λC也作類似規定.

(1)①當△ABC中,AB=AC時,則λA=
0
0
;②當△ABC中,λAB=0時,則△ABC的形狀是
等邊三角形
等邊三角形
;
(2)如圖2,在Rt△ABC中,∠A=30°,求λA和λC的值;
(3)如圖3,正方形網格中,格點△ABC的λA=
2
2
;
(4)判斷下列三種說法的正誤(正確的打“√”錯誤的打“×”)
①若△ABC中λA<1,則△ABC為銳角三角形
×
×

②若△ABC中λA=1,則△ABC為直角三角形
;
③若△ABC中λA>1,則△ABC為鈍角三角形
;
(5)通過本題解答,同學們應該有這樣的認識:一個無論多么陌生、多么綜合的問題,其實都來自于書本已學的基礎知識.因此,我們今后應重視基礎知識的學習;同時在解決問題時或者解決問題后,應該思考該問題的本質和目的:①鞏固哪些基礎知識;②培養我們哪些方面能力;③向我們滲透哪些數學思想.本題之所以是一道綜合題,就是因為涉及到的知識點多、面廣.下面就請你談談本題中所用到的、已學過的性質、定理、公理或判定等.(至少列舉兩條)

查看答案和解析>>

閱讀材料并解答問題:
我國是最早了解和應用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應用,古希臘數學家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
關于勾股定理的研究還有一個很重要的內容是勾股數組,在《幾何》課本中我們已經了解到,“能夠成為直角三角形三條邊的三個正整數稱為勾股數”,以下是畢達哥拉斯等學派研究出的確定勾股數組的兩種方法:
方法1:若m為奇數(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數.
方法2:若任取兩個正整數m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數.
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據方法1和方法2按規律填寫下列表格:
精英家教網
(3)某園林管理處要在一塊綠地上植樹,使之構成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹
 
棵.
精英家教網

查看答案和解析>>

我國是最早了解和應用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應用,古希臘數學家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
關于勾股定理的研究還有一個很重要的內容是勾股數組,在《幾何》課本中我們已經了解到,“能夠成為直角三角形三條邊的三個正整數稱為勾股數”,以下是畢達哥拉斯等學派研究出的確定勾股數組的兩種方法:
方法1:若m為奇數(m≥3),則a=m,b=數學公式(m2-1)和c=數學公式(m2+1)是勾股數.
方法2:若任取兩個正整數m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數.
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據方法1和方法2按規律填寫下列表格:

(3)某園林管理處要在一塊綠地上植樹,使之構成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹______棵.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视