(Ⅱ)若(其中是的導函數).求函數的最大值, 查看更多

 

題目列表(包括答案和解析)

22.函數在區間(0,+∞)內可導,導函數是減函數,且是曲線在點()處的切線方程,并設函數

   (Ⅰ)用、表示m;

   (Ⅱ)證明:當x∈(0,+∞)時,g(x)≥f(x);

   (Ⅲ)若關于的不等式上恒成立,其中ab為實數,求b的取值范圍及ab所滿足的關系.

查看答案和解析>>

設函數f(x)=ax3+bx2+cx+d(a,b,c,d∈R,a>0)其中,f(0)=3,f′(x)是f(x)的導函數.
(Ⅰ)若f′(-1)=f′(3)=-36,f′(5)=0,求函數f(x)的解析式;
(Ⅱ)若c=-6,函數f(x)的兩個極值點為x1,x2滿足-1<x1<1<x2<2.設λ=a2+b2-6a+2b+10,試求實數λ的取值范圍.

查看答案和解析>>

設函數
(Ⅰ)求函數的極大值;
(Ⅱ)若時,恒有成立(其中是函數的導函數),試確定實數的取值范圍.

查看答案和解析>>

設函數f(x)=ax3+bx2+cx+d(a,b,c,d∈R,a>0)其中,f(0)=3,f′(x)是f(x)的導函數.
(Ⅰ)若f′(-1)=f′(3)=-36,f′(5)=0,求函數f(x)的解析式;
(Ⅱ)若c=-6,函數f(x)的兩個極值點為x1,x2滿足-1<x1<1<x2<2.設λ=a2+b2-6a+2b+10,試求實數λ的取值范圍.

查看答案和解析>>

設函數f(x)=ax3+bx2+cx+d(a,b,c,d∈R,a>0)其中,f(0)=3,f′(x)是f(x)的導函數.
(Ⅰ)若f′(-1)=f′(3)=-36,f′(5)=0,求函數f(x)的解析式;
(Ⅱ)若c=-6,函數f(x)的兩個極值點為x1,x2滿足-1<x1<1<x2<2.設λ=a2+b2-6a+2b+10,試求實數λ的取值范圍.

查看答案和解析>>

一、              選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個備選項中,有且只有一項是符合要求的.

題號

1

2

3

4

5

6

7

8

答案

D

A

A

C

B

B

C

A

二、              填空題:本大題共7小題,每小題5分,共30分.其中13~15小題是選做題,考生只能選做兩題,若三題全答,則只計算前兩題得分.

9.             10.             11.

12.②③                                13.,

14.                     15.,

三、解答題:本大題共6小題,共80分.解答應寫出文字說明、證明過程或演算步驟.

16.    解:(Ⅰ)因為,,所以

   

因此,當,即)時,取得最大值

(Ⅱ)由,兩邊平方得

,即

因此,

17.    解:(Ⅰ)記“小球落入袋中”為事件,“小球落入袋中”為事件,則事件的對立事件為,而小球落入袋中當且僅當小球一直向左落下或一直向右落下,故

從而;

(Ⅱ)顯然,隨機變量,故

18.    解: 建立如圖所示的空間直角坐標系,

并設,則

    (Ⅰ),

所以,從而得

(Ⅱ)設是平面

法向量,則由

,

可以取

    顯然,為平面的法向量.

    設二面角的平面角為,則此二面角的余弦值

19.    解:(Ⅰ)依題意,有),化簡得

),

這就是動點的軌跡的方程;

    (Ⅱ)依題意,可設、,則有

兩式相減,得,由此得點的軌跡方程為

).

    設直線(其中),則

故由,即,解之得的取值范圍是

20.    解:(Ⅰ)依題意知:直線是函數在點處的切線,故其斜率

,

所以直線的方程為

    又因為直線的圖像相切,所以由

,

不合題意,舍去);

    (Ⅱ)因為),所以

時,;當時,

因此,上單調遞增,在上單調遞減.

因此,當時,取得最大值;

(Ⅲ)當時,.由(Ⅱ)知:當時,,即.因此,有

21.    解:(Ⅰ),;

(Ⅱ)依題意,得,,由此及

,

    由(Ⅰ)可猜想:).

    下面用數學歸納法予以證明:

    (1)當時,命題顯然成立;

    (2)假定當時命題成立,即有,則當時,由歸納假設及

,即

解之得

不合題意,舍去),

即當時,命題成立.

    由(1)、(2)知:命題成立.

(Ⅲ)

       

       

),則,所以上是增函數,故當時,取得最小值,即當時,

    ,即

   

解之得,實數的取值范圍為


同步練習冊答案
久久精品免费一区二区视