20.本題共有3個小題.第1小題滿分4分.第2小題滿分6分.第3小題滿分6分. 查看更多

 

題目列表(包括答案和解析)

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分。

     已知函數的反函數。定義:若對給定的實數,函數互為反函數,則稱滿足“和性質”;若函數互為反函數,則稱滿足“積性質”。

(1)       判斷函數是否滿足“1和性質”,并說明理由;    

(2)       求所有滿足“2和性質”的一次函數;

(3)       設函數對任何,滿足“積性質”。求的表達式。

查看答案和解析>>

(本題滿分16分)本題共有3個小題,第1小題滿分3分,第2小題滿分6分,

第3小題滿分7分.

已知雙曲線

(1)求雙曲線的漸近線方程;

(2)已知點的坐標為.設是雙曲線上的點,是點關于原點的對稱點.

.求的取值范圍;

(3)已知點的坐標分別為,為雙曲線上在第一象限內的點.記為經過原點與點的直線,截直線所得線段的長.試將表示為直線的斜率的函數.

查看答案和解析>>

 (本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分、第3小題滿分6分.

,常數,定義運算“”:,定義運算“”: ;對于兩點、,定義.

(1)若,求動點的軌跡;

(2)已知直線與(1)中軌跡交于、兩點,若,試求的值;

(3)在(2)中條件下,若直線不過原點且與軸交于點S,與軸交于點T,并且與(1)中軌跡交于不同兩點PQ , 試求的取值范圍.

查看答案和解析>>

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.

     已知函數的反函數.定義:若對給定的實數,函數互為反函數,則稱滿足“和性質”;若函數互為反函數,則稱滿足“積性質”.

(1)       判斷函數是否滿足“1和性質”,并說明理由;

(2)       求所有滿足“2和性質”的一次函數;

(3)       設函數對任何,滿足“積性質”.求的表達式.

查看答案和解析>>

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分4分,第3小題滿分8分。

已知雙曲線C的中心是原點,右焦點為F,一條漸近線m:,設過點A的直線l的方向向量。

(1)求雙曲線C的方程;

(2)若過原點的直線,且al的距離為,求K的值;

(3)證明:當時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為。

查看答案和解析>>

 

一、填空題

1.   2.    3.2   4.  5. i100   6.  7. 2

8.    9.   10.   11.   12.

二、選擇題

13.   14.A  15.A.  16. D

三、解答題

17.

   (1)由題意可得:=5----------------------------------------------------------(2分)

由:  得:=314---------------------------------------(4分)

或:

   (2)方法一:由:------(1分)

        或---------(1分)

得:0.0110-----------------------------------------------------------------(1分)

方法二:由:

得:-----------------------------------------------------------------(1分)

由:點和點的縱坐標相等,可得點和點關于點對稱

即:------------------------------------------------------------(1分)

得:0.011-----------------------------------------------------------------------(1分)

 

 

 

18.(1)是等腰三角形,

的中點,,--------------(1分)

底面.----(2分)

-------------------------------(1分)

于是平面.----------------------(1分)

   (2)過,連接----------------(1分)

平面,

,-----------------------------------(1分)

平面,---------------------------(1分)

就是直線與平面所成角。---(2分)

中,

----------------------------------(2分)

所以,直線與平面所成角--------(1分)

19.解:

   (1)函數的定義域為;------------------------------------(1分)

;當;--------------------------------------------------(1分)

所以,函數在定義域上不是單調函數,------------------(1分)

所以它不是“類函數” ------------------------------------------------------------------(1分)

   (2)當小于0時,則函數不構成單調函數;(1分)

=0時,則函數單調遞增,

但在上不存在定義域是值域也是的區間---------------(1分)

大于0時,函數在定義域里單調遞增,----(1分)

要使函數是“類函數”,

即存在兩個不相等的常數 ,

使得同時成立,------------------------------------(1分)

即關于的方程有兩個不相等的實根,--------------------------------(2分)

,--------------------------------------------------------------------------(1分)

亦即直線與曲線上有兩個不同的交點,-(1分)

所以,-------------------------------------------------------------------------------(2分)

20.解:

   (1)

,由,得數列構成等比數列------------------(3分)

,,數列不構成等比數列--------------------------------------(1分)

   (2)由,得:-------------------------------------(1分)

---------------------------------------------------------(1分)

----------------------------------------------(1分)

----(1分)

------------------------------------------------------------------(1分)

---------------------------------------------------------------------(1分)

   (3)若對任意,不等式恒成立,

即:

-------------------------------------------(1分)

令:,當時,有最大值為0---------------(1分)

令:

------------------------------------------------------(1分)

---------------------------------------------------------(1分)

所以,數列從第二項起單調遞減

時,取得最大值為1-------------------------------(1分)

所以,當時,不等式恒成立---------(1分)

21. 解:

   (1)雙曲線焦點坐標為,漸近線方程---(2分)

雙曲線焦點坐標,漸近線方程----(2分)

   (2)

得方程: -------------------------------------------(1分)

設直線分別與雙曲線的交點  的坐標分別為,線段 中點為坐標為

----------------------------------------------------------(1分)

得方程: ----------------------------------------(1分)

設直線分別與雙曲線的交點  的坐標分別為,線段 中點為坐標為

---------------------------------------------------(1分)

,-----------------------------------------------------------(1分)

所以,線段不相等------------------------------------(1分)

   (3)

若直線斜率不存在,交點總個數為4;-------------------------(1分)

若直線斜率存在,設斜率為,直線方程為

直線與雙曲線

    得方程:   ①

直線與雙曲線

     得方程:    ②-----------(1分)

 

的取值

直線與雙曲線右支的交點個數

直線與雙曲線右支的交點個數

交點總個數

1個(交點

1個(交點

2個

1個(

1個(,

2個

1個(與漸進線平行)

1個(理由同上)

2個

2個(,方程①兩根都大于2)

1個(理由同上)

3個

2個(理由同上)

1個(與漸進線平行)

3個

2個(理由同上)

2個(,方程②

兩根都大于1)

4個

得:-------------------------------------------------------------------(3分)

由雙曲線的對稱性可得:

的取值

交點總個數

2個

2個

3個

3個

4個

得:-------------------------------------------------------------------(2分)

綜上所述:(1)若直線斜率不存在,交點總個數為4;

   (2)若直線斜率存在,當時,交點總個數為2個;當 時,交點總個數為3個;當時,交點總個數為4個;---------------(1分)

 

 

 


同步練習冊答案
久久精品免费一区二区视