【題目】如圖,正方形中,延長
至
使
,以
為邊作正方形
,延長
交
于
,連接
,
,
為
的中點,連接
分別與
,
交于點
.則下列說法:①
;②
;③
;④
.其中正確的有( )
A.4個B.3個C.2個D.1個
【答案】A
【解析】
根據正方形的性質,以及中點的性質可得△FGN≌△HAN,即證①;利用角度之間的等量關系的轉換可以判斷②;根據△AKH∽△MKF,進而利用相似三角形的性質即可判斷③;設AN=AG=x,則AH=2x,FM=6x,根據△AKH∽△MKF得出
,再利用三角形的面積公式求出△AFN的面積,再利用
即可求出四邊形DHKM的面積,作比即可判斷④.
∵四邊形EFGB是正方形,CE=2EB,四邊形ABCD是正方形
∴G為AB中點,∠FGN=∠HAN=90°,AD=AB
即FG=AG=GB=AB
又H是AD的中點
AH=AD
∴FG=HA
又∠FNG=∠HNA
∴△FGN≌△HAN,故①正確;
∵∠DAM+∠GAM=90°
又∠NFG+∠FNG=90°
即∠FNG=∠GAM
∵∠FNG+∠NFG+90°=180°
∠AMD+∠DAM+90°=180°
∠FNG=∠GAM=∠AMD
∴,故②正確;
由圖可得:MF=FG+MG=3EB
△AKH∽△MKF
∴
∴KF=3KH
又∵NH=NF
且FH=KF+KH=4KH=NH+NF
∴NH=NF=2KH
∴KH=KN
∴FN=2NK,故③正確;
∵AN=GN且AN+GN=AG
∴可設AN=AG=x,則AH=2x,FM=6x
由題意可得:△AKH∽△MKF且相似比為:
∴△AKH以AH為底邊的高為:
∴
∴,故④正確;
故答案選擇A.
科目:初中數學 來源: 題型:
【題目】(本題9分)把代數式通過配湊等手段,得到完全平方式,再運用完全平方式是非負性這一性質增加問題的條件,這種解題方法叫做配方法.配方法在代數式求值,解方程,最值問題等都有著廣泛的應用.
例如:①用配方法因式分解:a2+6a+8
原式=a2+6a+9-1
=(a+3)2 –1
=(a+3-1)(a+3+1)
=(a+2)(a+4)
②若M=a2-2ab+2b2-2b+2,利用配方法求M的最小值:
a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1
=(a-b)2+(b-1)2 +1
∵(a-b)2≥0,(b-1)2 ≥0
∴當a=b=1時,M有最小值1
請根據上述材料解決下列問題:
(1)在橫線上添上一個常數項使之成為完全平方式:a 2+4a+ .
(2)用配方法因式分解: a2-24a+143
(3)若M=a2+2a +1,求M的最小值.
(4)已知a2+b2+c2-ab-3b-4c+7=0,求a+b+c的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(0,a),B(0,b),C(m,b)且(a-4)2+ =0,
(1)求C點坐標
(2)作DE DC,交y軸于E點,EF為 AED的平分線,且DFE= 90o。 求證:FD平分ADO;
(3)E 在 y 軸負半軸上運動時,連 EC,點 P 為 AC 延長線上一點,EM 平分∠AEC,且 PM⊥EM,PN⊥x 軸于 N 點,PQ 平分∠APN,交 x 軸于 Q 點,則 E 在運動過程中,的大小是否發生變化,若不變,求出其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,把二元一次方程的一個解用一個點表示出來,例如:可以把它的其中一個解
用點(2,1 )在平面直角坐標系中表示出來
探究1:
(1)請你在直角坐標系中標出4個以方程的解為坐標的點,然后過這些點中的任意兩點作直線,你有什么發現,請寫出你的發現 .
在這條直線上任取一點,這個點的坐標是方程的解嗎? (填“是”或“不是”___
(2)以方程的解為坐標的點的全體叫做方程
的圖象.根據上面的探究想一想:方程
的圖象是_ _.
探究2:根據上述探究結論,在同-平面直角坐標系中畫出二元一次方程組中的兩個二元一次方程的圖象,由這兩個二元一次方程的圖象,請你直接寫出二元一次方程組
的解,即
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形中,
,
,點
是
邊的中點,點
是
邊上一動點(不與點
重合),延長
交射線
于點
,連接
,
.
(1)求證:四邊形是平行四邊形;
(2)填空:
①當的值為_______時,四邊形
是矩形;
②當的值為______時,四邊形
是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一筆直的海岸線上有
、
兩個觀測站,
在
的正東方向,
(單位:
)有一艘小船在點
處,從
測得小船在北偏西
的方向,從
測得小船在北偏東
的方向.(結果保留根號)
(1)求點到海岸線
的距離;
(2)小船從點處沿射線
的方向航行一段時間后,到達點
處,此時,從
測得小船在北偏西
的方向,求點
與點
之間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每年的月
日為世界環保日,為了提倡低碳環保,某公司決定購買
臺節省能源的新設備,現有甲、乙兩種型號的設備可供選購.經調查:購買
臺甲型設備比購買
臺乙型設備多花
萬元,購買
臺甲型設備比購買
臺乙型設備少花
萬元.
(1)求甲、乙兩種型號設備每臺的價格;
(2)該公司經決定購買甲型設備不少于臺,預算購買節省能源的新設備資金不超過
萬元,你認為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設備每月的產量為噸,乙型設備每月的產量為
噸.若每月要求產量不低于
噸,為了節約資金,請你為該公司設計一種最省錢的購買方案.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com