【題目】如圖,O為△ABC內一點,OD⊥AB于點D,OE⊥AC于點E,OF⊥BC于點F,若OD=OE=OF,連接OA,OB,OC,下列結論不一定正確的是( )
A. △BOD≌△BOF B. ∠OAD=∠OBF
C. ∠COE=∠COF D. AD=AE
【答案】B
【解析】
根據AAS推出△BOD≌△BOF和△COF≌△COE即可,由AO=AO,DO=EO根據勾股定理求出即可.
∵OD⊥AB,OE⊥AC,OF⊥BC,OD=OE=OF,
∴O在∠ABC的角平分線上(∠DBO=∠FBO),∠ODB=∠OFB=90°,
∵在△BOD和△BOF中
∴△BOD≌△BOF,正確,故本選項錯誤;
B、根據已知不能推出∠OAD=∠OBF,錯誤,故本選項正確;
C、∵OD⊥AB,OE⊥AC,OF⊥BC,OD=OE=OF,
∴O在∠ACB的角平分線上(∠FCO=∠ECO),∠OFC=∠OEC=90°,
∵在△COF和△COE中
∴△COF≌△COE,
∴∠COE=∠COF,正確,故本選項錯誤;
D、∵OD⊥AB,OE⊥AC,
∴∠ADO=∠AEO=90°,
∵OD=OE,OA=OA,由勾股定理得:AE=AD,正確,故本選項錯誤;
故選B.
科目:初中數學 來源: 題型:
【題目】超市準備購進A、B兩種品牌的飲料共100件,兩種飲料每件利潤分別是15元和13元.設購進A種飲料x件,且所購進的兩種飲料能全部賣出,獲得的總利潤為y元.
(1)求y與x的函數關系式;
(2)根據兩種飲料歷次銷量記載:A種飲料至少購進30件,B種飲料購進數量不少于A種飲料件數的2倍.問:A、B兩種飲料進貨方案有幾種?哪一種方案能使超市所獲利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=3,AB=5,則CE的長為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某調查公司對本區域的共享單車數量及使用次數進行了調查發現,今年3月份第1周共有各類單車1000輛,第2周比第1周增加了10%,第3周比第2周增加了100輛.
調查還發現某款單車深受群眾喜愛,第1周該單車的每輛平均使用次數是這一周所有單車平均使用次數的2.5倍,第2周、第3周該單車的每輛平均使用次數都比前一周增長一個相同的百分數m,第3周所有單車的每輛平均使用次數比第1周增加的百分數也是m,而且第3周該款單車(共100輛)的總使用次數占到所有單車總使用次數的四分之一(注:總使用次數=每輛平均使用次數×車輛數).
(1)求第3周該區域內各類共享單車的總數量;
(2)求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,
平分
,點
、
、
分別是射線
、
、
上的點(點
、
、
不與點
重合),聯結
,交射線
與點
.
(1)如果,
平分
,試判斷
與射線
的位置關系,試說明理由;
(2)如果,
,垂足為點
,
中有兩個相等的角,請直接寫出
的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,長方形OABC的邊OC、OA分別在x軸、y軸上,B點在第一象限,點A的坐標是(0,4),OC=8.
(1)直接寫出點B、C的坐標;
(2)點P從原點O出發,在邊OC上以每秒1個單位長度的速度勻速向C點移動,同時點Q從點B出發,在邊BA上以每秒2個單位長度的速度勻速向A點移動,當一個點到達終點時,另一個點隨之停止移動,設移動的時間為t秒鐘,探究下列問題:
① 當t值為多少時,直線PQ∥y軸?
② 在整個運動過程中,能否使得四邊形BCPQ的面積是長方形OABC的面積的?若能,請直接寫出P、Q兩點的坐標;若不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程mx2﹣(m+2)x+2=0.
(1)證明:不論m為何值時,方程總有實數根;
(2)m為何整數時,方程有兩個不相等的正整數根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校七年級有400名學生,在一次生物測驗后,為了解本次測驗的成績情況,從中隨機取了部分學生的成績進行統計,并繪制了如下圖表:
等級 | 分數 | 頻數 | 頻率 |
A | 90≤x≤100 | 6 | 0.15 |
B | 80≤x<90 | 20 | a |
C | 70≤x<80 | b | 0.2 |
D | 60≤x<70 | c | 0.15 |
合計 | 1 |
請你根據以上信息,解答下列問題:
(1)a= , b= , c= , 并補全條形統計圖;
(2)請你估計該校七年級共有多少名學生本次成績不低于80分;
(3)現從樣本中的A等和D等學生中各隨機選取一名同學組成互助學習小組,則直接寫出兩名同學恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一副分別含有30°和45°角的兩個直角三角板,拼成如圖所示,其中∠C=90°,∠B=45°,∠E=30°,則∠BFD的度數是( )
A.10°
B.15°
C.25°
D.30°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com