精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=3,AB=5,則CE的長為(  )

A. B. C. D.

【答案】A

【解析】

根據三角形的內角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據角平分線和對頂角相等得出∠CEF=CFE,即可得出EC=FC,再利用相似三角形的判定與性質得出答案.

過點FFGAB于點G,

∵∠ACB=90°,CDAB,∴∠CDA=90°,∴∠CAF+CFA=90°,∠FAD+AED=90°,∵AF平分∠CAB,∴∠CAF=FAD,∴∠CFA=AED=CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=AGF=90°,∴FC=FG,∵∠B=B,∠FGB=ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】李師傅負責修理我校課桌椅,現知道李師傅修理2張課桌和3把椅子共需86分鐘,修理5張課桌和2把椅子共需149分鐘.

1)請問李師傅修理1張課桌和1把椅子各需多少分鐘

2)現我校有12張課桌和14把椅子需要修理,要求1天做完,李師傅每天工作8小時,請問李師傅能在上班時間內修完嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于E交AB的延長線于點F.

(1)求證:EF是⊙O的切線;
(2)若AE=6,FB=4,求⊙O的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖.AB是⊙O的直徑,E為弦AP上一點,過點E作EC⊥AB于點C,延長CE至點F,連接FP,使∠FPE=∠FEP,CF交⊙O于點D.
(1)證明:FP是⊙O的切線;
(2)若四邊形OBPD是菱形,證明:FD=ED.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC的三邊AB、BCCA長分別為40、50、60.其三條角平分線交于點O,則SABOSBCOSCAO=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】點A、B在數軸上分別表示實數,A、B兩點之間的距離記作AB.

當A、B兩點中有一點為原點時,不妨設A點在原點.如圖①所示,則AB=OB=

 當A、B兩點都不在原點時:

(1)如圖②所示,點A、B都在原點的右邊,不妨設點A在點B的左側,則AB=OB-OA=

(2)如圖③所示,點A、B都在原點的左邊,不妨設點A在點B的右側,則AB=OB-OA=

(3)如圖④所示,點A、B分別在原點的兩邊,不妨設點A在點O的右側,則AB=OB+OA=

回答下列問題:

(1)綜上所述,數軸上A、B兩點之間的距離AB= 

(2)數軸上表示2和-4的兩點A和B之間的距離AB=    

(3)數軸上表示和-2的兩點A和B之間的距離AB=     ,如果AB=2,則的值為    

(4)若代數式有最小值,則最小值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將一副三角板拼成如圖所示的圖形,即,,,相交于點

       

1)如果,那么平行嗎?試說明理由;

2)將繞著點逆時針旋轉,使得點落在邊上,聯結并延長交于點,聯結,若,,求的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O為△ABC內一點,OD⊥AB于點D,OE⊥AC于點E,OF⊥BC于點F,若OD=OE=OF,連接OA,OB,OC,下列結論不一定正確的是( )

A. △BOD≌△BOF B. ∠OAD=∠OBF

C. ∠COE=∠COF D. AD=AE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCDCB中,∠A=D=72°,ACB=DBC=36°,則圖中等腰三角形的個數是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视