【題目】如圖,已知二次函數的圖象頂點在
軸上,且
,與一次函數
的圖象交于
軸上一點
和另一交點
.
求拋物線的解析式;
點
為線段
上一點,過點
作
軸,垂足為
,交拋物線于點
,請求出線段
的最大值.
科目:初中數學 來源: 題型:
【題目】定義:若線段上的一個點把這條線段分成1:2的兩條線段,則稱這個點是這條線段的三等分點.如圖1,點C在線段AB上,且AC:CB=1:2,則點C是線段AB的一個三等分點,顯然,一條線段的三等分點有兩個.
(1)已知:如圖2,DE=15cm,點P是DE的三等分點,求DP的長.
(2)已知,線段AB=15cm,如圖3,點P從點A出發以每秒1cm的速度在射線AB上向點B方向運動;點Q從點B出發,先向點A方向運動,當與點P重合后立馬改變方向與點P同向而行且速度始終為每秒2cm,設運動時間為t秒.
①若點P點Q同時出發,且當點P與點Q重合時,求t的值.
②若點P點Q同時出發,且當點P是線段AQ的三等分點時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,規定:拋物線y=a(xh) +k的關聯直線為y=a(xh)+k.
例如:拋物線y=2(x+1) 3的關聯直線為y=2(x+1)3,即y=2x1.
(1)如圖,對于拋物線y=(x1) +3.
①該拋物線的頂點坐標為___,關聯直線為___,該拋物線與其關聯直線的交點坐標為___和___;
②點P是拋物線y=(x1) +3上一點,過點P的直線PQ垂直于x軸,交拋物線y=(x1)
+3的關聯直線于點Q.設點P的橫坐標為m,線段PQ的長度為d(d>0),求當d隨m的增大而減小時,d與m之間的函數關系式,并寫出自變量m的取值范圍。
(2)頂點在第一象限的拋物線y=a(x1) +4a與其關聯直線交于點A,B(點A在點B的左側),與x軸負半軸交于點C,直線AB與x軸交于點D,連結AC、BC.
①求△BCD的面積(用含a的代數式表示).
②當△ABC為鈍角三角形時,直接寫出a的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉之稱,某水產養殖大戶為了更好地發揮技術優勢,一次性收購了20000kg淡水魚,計劃養殖一段時間后再出售.已知每天放養的費用相同,放養10天的總成本為30.4萬元;放養20天的總成本為30.8萬元(總成本=放養總費用+收購成本).
(1)設每天的放養費用是a萬元,收購成本為b萬元,求a和b的值;
(2)設這批淡水魚放養t天后的質量為m(kg),銷售單價為y元/kg.根據以往經驗可知:m與t的函數關系為;y與t的函數關系如圖所示.
①分別求出當0≤t≤50和50<t≤100時,y與t的函數關系式;
②設將這批淡水魚放養t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象如圖,則下列結論中正確的有( 。
①a+b+c>0;②a-b+c<0;③b>0;④b=2a;⑤abc<0.
A. 5個 B. 4個 C. 3個 D. 2個
【答案】B
【解析】試題解析:當x=1時,y=a+b+c,頂點坐標(1,a+b+c),
由圖象可知,頂點坐標在第一象限,
∴a+b+c>0,故①正確;
當x=-1時,y=a-b+c,
由圖象可知,當x=-1時,所對應的點在第四象限,
∴y=a-b+c<0,故②正確;
∵圖象開口向下,
∴a<0,
∵x=- =1,
∴b=-2a,故④錯誤;
∴b>0,故③正確;
∵圖象與y軸的交點在y軸的上半軸,
∴c>0,
∴abc<0,故⑤正確;
∴正確的有4個.
故選B.
【題型】單選題
【結束】
10
【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點D,交AB于點H,AC的垂直平分線交BC于點E,交AC于點G,連接AD,AE,則下列結論錯誤的是( )
A. B. AD,AE將∠BAC三等分
C. △ABE≌△ACD D. S△ADH=S△CEG
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在∠MON的兩邊上分別截取OA、OB,使OA=OB;分別以點A、B為圓心,OA長為半徑作弧,兩弧交于點C,連接AC、BC、AB、OC.若AB=2cm,四邊形OACB的周長為8cm.則OC的長為______cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形OABC的邊OA,OC在坐標軸上,矩形CDEF的邊CD在CB上,且5CD=3CB,邊CF在軸上,且CF=2OC-3,反比例函數y= (k>0)的圖象經過點B,E,則點E的坐標是____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,函數的圖象與函數
的圖象交于點
,
.
(1)求函數的表達式;
(2)觀察圖象,直接寫出不等式的解集;
(3)若點是
軸上的動點,當
周長最小時,求點
的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com