精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,D、E分別是AC、AB上的點,BDCE相交于點O,給出四個條件:①OB=OC②∠EBO=∠DCO;③∠BEO=∠CDO④BE=CD.上述四個條件中,選擇兩個可以判定△ABC是等腰三角形的方法有(  )

A.2B.3C.4D.6

【答案】C

【解析】

①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:證△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:證△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:證△EBO≌△DCO,推出∠EBO=∠DCOOB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.

解:有①②,①③②④,③④,共4種,

①②,

理由是:∵OB=OC,

∴∠OBC=∠OCB,

∵∠EBO=∠DCO

∴∠EBO+∠OBC=∠DCO+∠OCB,

∠ABC=∠ACB

∴AB=AC,

△ABC是等腰三角形;

①③,

理由是:△EBO△DCO

∴△EBO≌△DCO,

∴∠EBO=∠DCO

∵∠OBC=∠OCB(已證),

∴∠EBO+∠OBC=∠DCO+∠OCB,

∠ABC=∠ACB

AB=AC,

∴△ABC是等腰三角形;

②④,

理由是:△EBO△DCO,

∴△EBO≌△DCO

∴OB=OC,

∴∠OBC=∠OCB

∴∠EBO+∠OBC=∠DCO+∠OCB,

∠ABC=∠ACB

AB=AC,

∴△ABC是等腰三角形;

③④,

理由是:△EBO△DCO,

∴△EBO≌△DCO

∴∠EBO=∠DCOOB=OC,

∴∠OBC=∠OCB

∴∠EBO+∠OBC=∠DCO+∠OCB,

∠ABC=∠ACB

AB=AC,

∴△ABC是等腰三角形;

故選C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為αα90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠AOB的大小為α,P是∠AOB內部的一個定點,且OP2,點E、F分別是OAOB上的動點,若△PEF周長的最小值等于2,則α=(

A. 30°B. 45°C. 60°D. 15°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】垃圾不落地,城市更美麗.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生是否隨手丟垃圾這一情況進行了問卷調查,統計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現將調查結果繪制成以下來不辜負不完整的統計圖.

請你根據以上信息,解答下列問題:

(1)補全上面的條形統計圖和扇形統計圖;

(2)所抽取學生是否隨手丟垃圾情況的眾數是   ;

(3)若該校七年級共有1500名學生,請你估計該年級學生中經常隨手丟垃圾的學生約有多少人?談談你的看法?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中,,點上一點.

1)如圖平分.求證:;

2)如圖,點在線段上,且,求證:

3)如圖,過點作的延長線于點,連接,過點作,求證:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PEACE,QBC延長線上一點,當PACQ時,連PQAC邊于D,則DE的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線lAC:y=﹣x軸、y軸分別為A、C兩點,直線BCACx軸于點B.

(1)求點B的坐標及直線BC的解析式;

(2)將△OBC關于BC邊翻折,得到△O′BC,過點O′作直線O′E垂直x軸于點E,Fy軸上一點,P是直線O′E上任意一點,P、Q兩點關于x軸對稱,當|PA﹣PC|最大時,請求出QF+FC的最小值;

(3)M是直線O′E上一點,且QM=3,在(2)的條件下,在平面直角坐標系中,是否存在點N,使得以Q、F、M、N四點為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,AB=4,AD=5,tanA=,點P從點A出發,沿折線AB﹣BC以每秒1個單位長度的速度向中點C運動,過點PPQAB,交折線AD﹣DC于點Q,將線段PQ繞點P順時針旋轉90°,得到線段PR,連接QR.設PQRABCD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).

(1)當點R與點B重合時,求t的值;

(2)當點PBC邊上運動時,求線段PQ的長(用含有t的代數式表示);

(3)當點R落在ABCD的外部時,求St的函數關系式;

(4)直接寫出點P運動過程中,PCD是等腰三角形時所有的t值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有一家糖果加工廠,它們要對一款奶糖進行包裝,要求每袋凈含量為100g.現使用甲、乙兩種包裝機同時包裝100g的糖果,從中各抽出10袋,測得實際質量(g)如下:

甲:101,102,99100,98,103,100,98100,99

乙:100,101100,98101,97100,98103,102

1)分別計算兩組數據的平均數、眾數、中位數;

2)要想包裝機包裝奶糖質量比較穩定,你認為選擇哪種包裝機比較適合?簡述理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视