精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F為垂足,下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結論有(填序號).

【答案】①②④
【解析】解:①∵BD為△ABC的角平分線,∴∠ABD=∠CBD,
在△ABD和△EBC中,
,
∴△ABD≌△EBC(SAS),
∴①正確;
②∵BD為△ABC的角平分線,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,
∴②正確;
③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,
∴∠DCE=∠DAE,
∴△ACE為等腰三角形,
∴AE=EC,
∵△ABD≌△EBC,
∴AD=EC,
∴AD=AE=EC,
∵BD為△ABC的角平分線,EF⊥AB,而EC不垂直與BC,
∴EF≠EC,
∴③錯誤;
④過E作EG⊥BC于G點,

∵E是BD上的點,∴EF=EG,
在RT△BEG和RT△BEF中,
,
∴RT△BEG≌RT△BEF(HL),
∴BG=BF,
在RT△CEG和RT△AFE中,

∴RT△CEG≌RT△AFE(HL),
∴AF=CG,
∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF,
∴④正確.
所以答案是:①②④.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】解方程:

1x2+x0

2x22x+14

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一元二次方程x24x50的兩根分別是x1、x2,那么 (1+x1)(1+x2)的值是__

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果把一個自然數各數位上的數字從最高位到個位依次排出的一串數字,與從個位到最高位依次排出的一串數字完全相同,那么我們把這樣的自然數稱為“和諧數”.例如自然數12321,從最高位到個位依次排出的一串數字是:1,2,3,2,1,從個位到最高位依次排出的一串數字仍是:1,2,3,2,1,因此12321是一個“和諧數”,再加22,545,3883,345543,…,都是“和諧數”.

(1)請你直接寫出3個四位“和諧數”;請你猜想任意一個四位“和諧數”能否被11整除?并說明理由;

(2)已知一個能被11整除的三位“和諧數”,設其個位上的數字x(1≤x≤4,x為自然數),十位上的數字為y,求y與x的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算a·(a 2) m·am所得的結果是( )

A. a3m B. a3m+1 C. a4m D. 以上結論都不對

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】方程x(x1)=0的根是__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列方程變形正確的是( )
A.方程3x﹣2=2x﹣1移項,得3x﹣2x=﹣1﹣2
B.方程3﹣x=2﹣5(x﹣1)去括號,得3﹣x=2﹣5x﹣1
C.方程 可化為3x=6.
D.方程 系數化為1,得x=﹣1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,等邊△ABC邊長為6,AD是△ABC的中線,P為線段AD(不包括端點A、D)上一動點,以CP為一邊且在CP左下方作如圖所示的等邊△CPE,連結BE.

(1)點P在運動過程中,線段BE與AP始終相等嗎?說說你的理由;
(2)若延長BE至F,使得CF=CE=5,如圖2,問:求出此時AP的長;
(3)當點P在線段AD的延長線上時,F為線段BE上一點,使得CF=CE=5.求EF的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某車隊要把4000噸貨物運到雅安地震災區(方案定后,每天的運量不變)。
(1)從運輸開始,每天運輸的貨物噸數n(單位:噸)與運輸時間t(單位:天)之間有怎樣的函數關系式?
(2)因地震,到災區的道路受阻,實際每天比原計劃少運20%,則推遲1天完成任務,求原計劃完成任務的天數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视