【題目】如圖,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延長CA到O,使AO=AC,以O為圓心,OA長為半徑作⊙O交BA延長線于點D,連接CD.
(1)求證:CD是⊙O的切線;
(2)若AB=4,求圖中陰影部分的面積.
【答案】(1)見解析;(2)S陰影=2﹣
π.
【解析】
(1)連接OD,求出∠OAD=60°,得出等邊三角形OAD,求出AD=OA=AC,∠ODA=∠O=60°,求出∠ADC=∠ACD=∠OAD=30°,求出∠ODC=90°,根據切線的判定得出即可;
(2)求出OD,根據勾股定理求出CD長,分別求出三角形ODC和扇形AOD的面積,相減即可.
(1)證明:連接OD,
∵∠BCA=90°,∠B=30°,
∴∠OAD=∠BAC=60°,
∵OD=OA,
∴△OAD是等邊三角形,
∴AD=OA=AC,∠ODA=∠O=60°,
∴∠ADC=∠ACD=∠OAD=30°,
∴∠ODC=60°+30°=90°,
即OD⊥DC,
∵OD為半徑,
∴CD是⊙O的切線;
(2)解:∵AB=4,∠ACB=90°,∠B=30°,
∴OD=OA=AC=AB=2,
由勾股定理得:CD=
∴S陰影=S△ODC﹣S扇形AOD= .
科目:初中數學 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點E,F分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=6,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一批單價為16元的日用品,銷售一段時間后,為了獲取更多利潤, 商店決定提高銷售價格,經試驗發現,若按每件20元的價格銷售時,每月能賣360件; 若按每件25元的價格銷售時,每月能賣210件.假定每月銷售件數y(件)是價格x( 元/件)的一次函數.
(1)試求y與x之間的函數關系式;
(2)在商品不積壓,且不考慮其他因素的條件下,問銷售價格為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市將開展演講比賽活動,某校對參加選拔的學生的成績按A、B、C、D四個等級進行統計,繪制了如下不完整的統計表和扇形統計圖,
成績等級 | 頻數 | 頻率 |
A | 4 | n |
B | m | 0.51 |
C | ||
D | 15 |
(1)求m、n的值;
(2)求“C等級”所對應的扇形圓心角的度數;
(3)已知成績等級為A的4名學生中有1名男生和3名女生,現從中隨機挑選2名學生代表學校參加全市比賽,求出恰好選中一男生和一女生的概率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數相同.
求甲、乙兩種商品的每件進價;
該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發現甲種商品銷量不好,商場決定:甲種商品銷售一定數量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變
要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校舉行了創建全國文明城市知識競賽活動,初一年級全體同學參加了競賽.收集數據:現隨機抽取初一年級30名同學“創文知識競賽”成績,分數如下(單位:分):
90 | 85 | 68 | 92 | 81 | 84 | 95 | 93 | 87 | 89 | 78 | 99 | 89 | 85 | 97 |
88 | 81 | 95 | 86 | 98 | 95 | 93 | 89 | 86 | 84 | 87 | 79 | 85 | 89 | 82 |
⑴請將圖表中空缺的部分補充完整;
⑵學校決定表彰“創文知識競賽”成績在90分以上的同學,根據上表統計結果估計該校初一年級360人中,約有多少人將獲得表彰;
⑶“創文知識競賽”中,受到表彰的小紅同學得到了印有龔扇、剪紙、彩燈、恐龍圖案的四枚紀念章,她從中選取兩枚送給弟弟,則小紅送給弟弟的兩枚紀念章中,恰好有恐龍圖案的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】教材呈現:下圖是華師版八年級上冊數學教材第94頁的部分內容.
線段垂直平分線
我們已知知道線段是軸對稱圖形,線段的垂直一部分線是線段的對稱軸,如圖直線是線段
的垂直平分線,
是
上任一點,連結
、
,將線段
與直線
對稱,我們發現
與
完全重合,由此都有:線段垂直平分線的性質定理,線段垂直平分線上的點到線段的距離相等.
已知:如圖,,垂足為點
,
,點
是直線
上的任意一點.
求證:.
圖中的兩個直角三角形和
,只要證明這兩個三角形全等,便可證明
(請寫出完整的證明過程)
請根據教材中的分析,結合圖①,寫出“線段垂直平分線的性質定理”完整的證明過程,定理應用.
(1)如圖②,在中,直線
、
、
分別是邊
、
、
的垂直平分線.
求證:直線、
、
交于點.
(2)如圖③,在中,
,邊
的垂直平分線交
于點
,邊
的垂直平分線交
于點
,若
,
,則
的長為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,內接于圓
,直徑
的長為2,過點
的切線交
的延長線于點
.張老師要求添加條件后,編制一道題目,并解答.
(1)在添加條件,求
的長,請你解答.
(2)以下是小明,小聰的對話:
小明:我加的條件是,就可以求出
的長.
小聰:你這樣太簡單了,我加的條件是,連結
,就可以證明
與
全等.參考此對話,在內容中添加條件,編制一道題目(可以添線、添字母),并解答.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com