【題目】如圖,正方形網格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內,△ABC的三個頂點坐標分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)畫出△ABC繞O點順時針旋轉90°后的△A2B2C2;
(3)在(2)的條件下,求點C劃過的路徑長度(結果保留π).
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為4的正方形紙片ABCD折疊,使得點A落在邊CD的中點E處,折痕為FG,點F、G分別在邊AD、BC上,則折痕FG的長度為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點D是邊BC上(不與B,C重合)一動點,∠ADE=∠B=a,DE交AC于點E,下列結論:①AD2=AE.AB;②1.8≤AE<5;⑤當AD=時,△ABD≌△DCE;④△DCE為直角三角形,BD為4或6.25.其中正確的結論是_____.(把你認為正確結論序號都填上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在中,
,
,點
從
點出發,沿著
以每秒
的速度向
點運動;同時點
從
點出發,沿
以每秒
的速度向
點運動,設運動時間為
.
(1)當為何值時,
;
(2)當,求
的值;
(3)能否與
相似?若能,求出
的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料,并解決問題:
(1)如圖①等邊△ABC內有一點P,若點P到頂點A、B、C的距離分別為3,4,5,求∠APB的度數.
為了解決本題,我們可以將△ABP繞頂點A旋轉到△ACP′處,此時△ACP′≌△ABP,這樣就可以利用旋轉變換,將三條線段PA、PB、PC轉化到一個三角形中,從而求出∠APB=__________;
(2)基本運用
請你利用第(1)題的解答思想方法,解答下面問題:
已知如圖②,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2;
(3)能力提升
如圖③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,點O為Rt△ABC內一點,連接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次測量旗桿高度的活動中,某數學興趣小組使用的方案如下:AB表示某同學從眼睛到腳底的距離,CD表示一根標桿,EF表示旗桿,AB,CD,EF都垂直于地面,若AB=1.6米,CD=2米,人與標桿之間的距離BD=1米,標桿與旗桿之間的距離DF=30米,求旗桿EF的高.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=2cm,F是弦BC的中點,∠ABC=60°.若動點E以2cm/s的速度從A點出發沿著A→B→A方向運動,設運動時間為t(s)(0≤t<3),連接EF,當△BEF是直角三角形時,t(s)的值為【 】
A. B.1 C.
或1 D.
或1或
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1,作第1個正方形A1B1C1C;延長C1B1交x軸于點A2,作第2個正方形A2B2C2C1,…,按這樣的規律進行下去,第2019個正方形的面積是_________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com