精英家教網 > 初中數學 > 題目詳情

【題目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE中點,連接DF、CF.
(1)如圖1,當點D在AB上,點E在AC上,請直接寫出此時線段DF、CF的數量關系和位置關系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點A順時針旋轉45°時,請你判斷此時(1)中的結論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點A順時針旋轉90°時,若AD=1,AC= ,求此時線段CF的長(直接寫出結果).

【答案】
(1)解:∵∠ACB=∠ADE=90°,點F為BE中點,

∴DF= BE,CF= BE,

∴DF=CF.

∵△ABC和△ADE是等腰直角三角形,

∴∠ABC=45°

∵BF=DF,

∴∠DBF=∠BDF,

∵∠DFE=∠ABE+∠BDF,

∴∠DFE=2∠DBF,

同理得:∠CFE=2∠CBF,

∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,

∴DF=CF,且DF⊥CF


(2)解:(1)中的結論仍然成立.

證明:如圖,此時點D落在AC上,延長DF交BC于點G.

∵∠ADE=∠ACB=90°,

∴DE∥BC.

∴∠DEF=∠GBF,∠EDF=∠BGF.

∵F為BE中點,

∴EF=BF.

∴△DEF≌△GBF.

∴DE=GB,DF=GF.

∵AD=DE,

∴AD=GB,

∵AC=BC,

∴AC﹣AD=BC﹣GB,

∴DC=GC.

∵∠ACB=90°,

∴△DCG是等腰直角三角形,

∵DF=GF.

∴DF=CF,DF⊥CF


(3)解:延長DF交BA于點H,

∵△ABC和△ADE是等腰直角三角形,

∴AC=BC,AD=DE.

∴∠AED=∠ABC=45°,

∵由旋轉可以得出,∠CAE=∠BAD=90°,

∵AE∥BC,

∴∠AEB=∠CBE,

∴∠DEF=∠HBF.

∵F是BE的中點,

∴EF=BF,

∴△DEF≌△HBF,

∴ED=HB,

∵AC= ,在Rt△ABC中,由勾股定理,得

AB=4,

∵AD=1,

∴ED=BH=1,

∴AH=3,在Rt△HAD中由勾股定理,得

DH=

∴DF= ,

∴CF=

∴線段CF的長為


【解析】(1)根據“直角三角形斜邊上的中線等于斜邊的一半”可知DF=BF,根據∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF.(2)延長DF交BC于點G,先證明△DEF≌△GCF,得到DE=CG,DF=FG,根據AD=DE,AB=BC,得到BD=BG又因為∠ABC=90°,所以DF=CF且DF⊥BF.(3)延長DF交BA于點H,先證明△DEF≌△HBF,得到DE=BH,DF=FH,根據旋轉條件可以△ADH為直角三角形,由△ABC和△ADE是等腰直角三角形,AC= ,可以求出AB的值,進而可以根據勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.
【考點精析】解答此題的關鍵在于理解等腰直角三角形的相關知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知BE平分∠ABD,DE平分∠BDC,且∠EBDEDB90°.

(1)試說明:ABCD;

(2)HBE的延長線與直線CD的交點,BI平分∠HBD寫出∠EBI與∠BHD的數量關系,并說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,直線EF分別交兩直角邊AB、BC與E、F兩點,且EF∥AC,P是斜邊AC的中點,連接PE,PF,且AB= ,BC=

(1)當E、F均為兩直角邊的中點時,求證:四邊形EPFB是矩形,并求出此時EF的長;
(2)設EF的長度為x(x>0),當∠EPF=∠A時,用含x的代數式表示EP的長;
(3)設△PEF的面積為S,則當EF為多少時,S有最大值,并求出該最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,E是BC的中點,AB交⊙O于D點.
(1)直接寫出ED和EC的數量關系:;
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;
(3)填空:當BC=時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某批發市場有中招考試文具套裝,其中A品牌的批發價是每套20元,B品牌的批發價是每套25元,小王需購買A、B兩種品牌的文具套裝共1000套.
(1)若小王按需購買A、B兩種品牌文具套裝共用22000元,則各購買多少套?
(2)憑會員卡在此批發市場購買商品可以獲得8折優惠,會員卡費用為500元.若小王購買會員卡并用此卡按需購買1000套文具套裝,共用了y元,設A品牌文具套裝買了x包,請求出y與x之間的函數關系式.
(3)若小王購買會員卡并用此卡按需購買1000套文具套裝,共用了20000元,他計劃在網店包郵銷售這兩種文具套裝,每套文具套裝小王需支付郵費8元,若A品牌每套銷售價格比B品牌少5元,請你幫他計算,A品牌的文具套裝每套定價不低于多少元時才不虧本(運算結果取整數)?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABCD中,點E,F分別在邊BC,AD上,且AF=CE.

(Ⅰ)如圖①,求證四邊形AECF是平行四邊形;

(Ⅱ)如圖②,若∠BAC=90°,且四邊形AECF是邊長為6的菱形,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CD是⊙O的直徑,且CD=2cm,點P為CD的延長線上一點,過點P作⊙O的切線PA,PB,切點分別為點A,B.
(1)連接AC,若∠APO=30°,試證明△ACP是等腰三角形;
(2)填空: ①當DP=cm時,四邊形AOBD是菱形;
②當DP=cm時,四邊形AOBP是正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(5,0)兩點,直線y=﹣ x+3與y軸交于點C,與x軸交于點D.點P是x軸上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E.設點P的橫坐標為m.

(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點E′是點E關于直線PC的對稱點,是否存在點P,使點E′落在y軸上?若存在,請直接寫出相應的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB、AC于點E、F;②分別以點E、F為圓心,大于 EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视