分析 根據題意分析圖形可得:在Rt△CDF中,由CF=2,tan∠CDF=2,可求得DE,進而得到BE的長.解Rt△AGC可得BE的值,通過比較BE、AB的大小即可求出答案.
解答 解:∵i=1:0.5,CF=2米
∴tan∠CDF=$\frac{CF}{DF}$=2,
∴DF=1米,BG=2米,
∵BD=14米,
∴BF=GC=15米.
在Rt△AGC中,AG=15tan30°=15×$\frac{\sqrt{3}}{3}$=5$\sqrt{3}$≈8.66(米),
∴AB=AG+BG=8.66+2=10.66米,BE=BD-DE=14-2=12(米),
∵10.66<12,
∴沒有必要封止DE.
點評 本題考查俯角、仰角的定義,要求學生能借助俯角、仰角構造直角三角形并結合圖形利用三角函數解直角三角形.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com