精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtABC中,∠B90°,AC60cm,∠A60°,點D從點C出發沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D,E運動的時間是ts0t≤15).過點DDFBC于點F,連接DEEF

1)求證:四邊形AEFD是平行四邊形;

2)當t為何值時,DEF為直角三角形?請說明理由.

【答案】1)見解析;(2)當t12時,DEF為直角三角形.

【解析】

1)根據三角形內角和定理得到∠C30°,根據直角三角形的性質求出DF,得到DFAE,根據平行四邊形的判定定理證明;

2)分∠EDF90°、∠DEF90°兩種情況,根據直角三角形的性質列出算式,計算即可.

1)∵∠B90°,∠A60°,

∴∠C30°,

ABAC30,

由題意得,CD4tAE2t,

DFBC,∠C30°,

DFCD2t,

DFAE,

DFAEDFAE,

∴四邊形AEFD是平行四邊形;

2)當∠EDF90°時,如圖①,

DEBC

∴∠ADE=∠C30°,

AD2AE,即604t2t×2

解得,t,

當∠DEF90°時,如圖②,

ADEF,

DEAC,

AE2AD,即2t604t),

解得,t12,

綜上所述,當t12時,△DEF為直角三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx﹣2x軸交于點A﹣1,0),B4,0)兩點,與y軸交于點C,經過點B的直線交y軸于點E0,2).

1)求該拋物線的解析式;

2)如圖2,過點ABE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結PAEA,ED,PD,求四邊形EAPD面積的最大值;

3)如圖3,連結AC,將AOC繞點O逆時針方向旋轉,記旋轉中的三角形為AOC,在旋轉過程中,直線OC與直線BE交于點Q,若BOQ為等腰三角形,請直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB與函數yx>0)的圖象交于點Am,2),B(2,n).過點AAC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使ODOC,且ACD的面積是6,連接BC

(1)求m,kn的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點A(﹣1,2)、B(3,6)在拋物線y=ax2+bx

(1)求拋物線的解析式;

(2)如圖1,點F的坐標為(0,m)(m>2),直線AF交拋物線于另一點G,過點Gx軸的垂線,垂足為H.設拋物線與x軸的正半軸交于點E,連接FH、AE,求證:FHAE;

(3)如圖2,直線AB分別交x軸、y軸于C、D兩點.點P從點C出發,沿射線CD方向勻速運動,速度為每秒個單位長度;同時點Q從原點O出發,沿x軸正方向勻速運動,速度為每秒1個單位長度.點M是直線PQ與拋物線的一個交點,當運動到t秒時,QM=2PM,直接寫出t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A、B、C、D的坐標分別是(1,7)、(1,1)、(4,1)、(6,1),且△CDE∽△ABC,則點E的坐標是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】45°角的直角三角板如圖放置在平面直角坐標系中,其中A(-30),B0,2),則直線BC的解析式為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校初二開展英語拼寫大賽,愛國班和求知班根據初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績如圖所示:

1)根據圖示填寫下表:

班級

中位數(分)

眾數(分)

平均數(分)

愛國班

85

求知班

100

85

2)結合兩班復賽成績的平均數和中位數,分析哪個班級的復賽成績比較好?

3)已知愛國班復賽成績的方差是70,請求出求知班復賽成績的方差,并說明哪個班成績比較穩定?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】8分)現有三張反面朝上的撲克牌:紅桃2、紅桃3、黑桃x1≤x≤13x為奇數或偶數).把牌洗勻后第一次抽取一張,記好花色和數字后將牌放回,重新洗勻第二次再抽取一張.

1)求兩次抽得相同花色的概率;

2)當甲選擇x為奇數,乙選擇x為偶數時,他們兩次抽得的數字和是奇數的可能性大小一樣嗎?請說明理由.(提示:三張撲克牌可以分別簡記為紅2、紅3、黑x

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC,按如下步驟作圖:

分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;

連接MN,分別交AB、AC于點D、O;

過C作CEAB交MN于點E,連接AE、CD.

(1)求證:四邊形ADCE是菱形;

(2)當∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视