【題目】“網絡紅包”是互聯網運營商、商家通過組織互聯網線上活動、派發紅包的互聯網工具,是朋友間互道祝福的表達形式之一.“網絡紅包”春節活動已經逐漸深入到大眾的生活中,得到了人們較為廣泛的關注.根據某咨詢公司(2018年中國春節“網絡紅包”專題調查報告》顯示:在接受調查的8萬名網民中,對“網絡紅包”春節話動了解程度的占比方面,“較為了解”和“很了解”的網民共占比64%,分別占比36%和28%.在“不了解”和“只了解一兩個“的受訪網民中,“不了解”的網民人數比“只了解一兩個”的網民人數多25%.如圖是該咨詢公司繪制的“中國網民關于‘網絡紅包’春節活動了解情況調查”統計圖(不完整).
請根據以上信息解答下列問題:
(1)在受訪的網民中,“不了解”和“只了解一兩個”的網民人數共有 萬人,其中“不了解”的網民人數是 萬人;
(2)請將扇形統計圖補充完整;
(3)2017除夕晚上小聰和爸爸、媽媽一起玩微信搶紅包游戲,他們約定由爸爸在家人微信群中先后發兩次“拼手氣紅包”,每次發放的紅包數是3個,每個紅包抽到的金額隨機(每兩個紅包的金額都不相等),每次誰抽到紅包的金額最大誰就是“手氣最佳”者,求兩次游戲中小聰都能獲得“手氣最佳”的概率為多少?
【答案】(1) 2.88,1.6;(2)見解析;(3).
【解析】分析:(1)①用8萬ד不了解”和“只了解一兩個”所對應的百分比求出“不了解”和“只了解一兩個”的人數;②設“只了解一兩個”的網民人數為x萬人,則 “不了解”的網民人數為1.25x,
根據“只了解一兩個”的網民人數+“不了解”的網民人數=2.88萬人列方程求解;
(2)計算出“只了解一兩個”的網民人數和 “不了解”的網民人數所占的百分比,然后補全統計圖;
(3)先列出樹狀圖,用符合條件的情況數除以所有情況數即可.
詳解:(1)∵“不了解”和“只了解一兩個”所對應的百分比為1﹣64%=36%,
∴“不了解”和“只了解一兩個”的網民人數為8×36%=2.88萬人,
設“只了解一兩個”的網民人數為x萬人,則 “不了解”的網民人數為1.25x,
則x+1.25x=2.88,
解得:x=1.28,
則1.25x=1.6,
即“不了解”的網民人數是1.6萬人,
故答案為:2.88,1.6;
(2)“不了解”的網民人數占總人數的百分比為×100%=20%,
“只了解一兩個”的網民人數占總人數的百分比為×100%=16%,
補全扇形圖如下:
(3)設“手氣最佳”的紅包為A、其它兩個紅包為B、C,
畫樹狀圖如下:
由樹狀圖可知,共有9種等可能結果,其中小聰兩次抽到“手氣最佳”的結果有1種,所以兩次游戲中小聰都能獲得“手氣最佳”的概率為.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為( 。
A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下圖是昌平區2019年1月份每天的最低和最高氣溫,觀察此圖,下列說法正確的是( )
A.在1月份中,最高氣溫為10℃,最低氣溫為-2℃
B.在10號至16號的氣溫中,每天溫差最小為7℃
C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃
D.每天的最高氣溫與最低氣溫都是具有相反意義的量
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知邊長為4的正方形ABCD,頂點A與坐標原點重合,一反比例函數圖象過頂點C,動點P以每秒1個單位速度從點A出發沿AB方向運動,動點Q同時以每秒4個單位速度從D點出發沿正方形的邊DC﹣CB﹣BA方向順時針折線運動,當點P與點Q相遇時停止運動,設點P的運動時間為t.
(1)求出該反比例函數解析式;
(2)連接PD,當以點Q和正方形的某兩個頂點組成的三角形和△PAD全等時,求點Q的坐標;
(3)用含t的代數式表示以點Q、P、D為頂點的三角形的面積s,并指出相應t的取值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=(k≠0)的圖象與一次函數y=﹣
x+1的圖象交于A(﹣2,m),B(n,﹣1)兩點.
(1)求反比例函數的解析式;
(2)連接OA,OB,求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數(
)的圖象與
軸交于
兩點(點
在點
的左側),與
軸交于點
,且
,
,頂點為
.
(1)求二次函數的解析式;
(2)點為線段
上的一個動點,過點
作
軸的垂線
,垂足為
,若
,四邊形
的面積為
,求
關于
的函數解析式,并寫出
的取值范圍;
(3)探索:線段上是否存在點
,使
為直角三角形?如果存在,求出點
的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖平面直角坐標系中,O(0,0),A(4,4 ),B(8,0).將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=
,則CE:DE的值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果有一列數,從這列數的第2個數開始,每一個數與它的前一個數的比等于同一個非零的常數,這樣的一列數就叫做等比數列(Geometric Sequences).這個常數叫做等比數列的公比,通常用字母q表示(q≠0).
(1)觀察一個等比列數1,,…,它的公比q= ;如果an(n為正整數)表示這個等比數列的第n項,那么a18= ,an= ;
(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進行:
令S=1+2+4+8+16+…+230…①
等式兩邊同時乘以2,得2S=2+4+8+16++32+…+231…②
由② ﹣ ①式,得2S﹣S=231﹣1
即(2﹣1)S=231﹣1
所以
請根據以上的解答過程,求3+32+33+…+323的值;
(3)用由特殊到一般的方法探索:若數列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數為q,請用含a1,q,n的代數式表示an;如果這個常數q≠1,請用含a1,q,n的代數式表示a1+a2+a3+…+an.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利用無刻度的直尺和圓規作出符合要求的圖形.(注:不要求寫作法,但保留作圖痕跡)
(1)如圖,已知線段AB,作一個△ABC,使得∠ACB=90°;(只需畫一個即可)
(2)如圖,已知線段MN,作一個△MPN,使得∠MPN=90°且sinM=.(只需畫一個即可)
(1) (2)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com