【題目】關注數學文化:古希臘的幾何學家海倫在數學史上以解決幾何測量問題而聞名.在他的著作《度量》一書中,給出了如下公式:若一個三角形的三邊長分別為a,b,c,記p=,則三角形的面積S=
(海倫公式).我國南宋時期數學家秦九韶曾提出利用三角形的三邊求面積的秦九韶公式:
.海倫公式和秦九韶公式實質上是同一個公式,所以我們一般也稱此公式為海倫-秦九韶公式.
若△ABC的三邊長分別為5,6,7,△DEF的三邊長分別為,
,
,請選擇合適的公式分別求出△ABC和△DEF的面積.
科目:初中數學 來源: 題型:
【題目】被譽為“中原第一高樓”的鄭州會展賓館(俗稱“大玉米”)坐落在風景如畫的如意湖畔,是來鄭州觀光的游客留影的最佳景點,學完了三角函數知識后,劉明和王華同學決定用自己學到的知識測量“大玉米”的高度他們制訂了測量方案,并利用課余時間完成了實地測量,測量項目及結果如下表
請你幫助該小組根據上表中的測量數據,求出鄭州會展賓館的高度.
(參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結果保留整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在中,
分別為
上一點,且
,
,
.
(1)求證:;
(2)求證:;
(3)若,將
繞
順時針旋轉至如圖2所示位置(
不動),連
,取
中點
,連
,
為射線
上一點,連
,求
的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=8,AD=6, 點E是邊CD上一個動點,連接AE,將△AED沿直線AE翻折得△AEF.
(1) 當點C落在射線AF上時,求DE的長;
(2)以F為圓心,FB長為半徑作圓F,當AD與圓F相切時,求cos∠FAB的值;
(3)若P為AB邊上一點,當邊CD上有且僅有一點Q滿∠BQP=45°,直接寫出線段BP長的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道:三角形的三條角平分線交于一點,這個點稱為三角形的內心(三角形內切圓的圓心).現在規定:如果四邊形的四個角的角平分線交于一點,我們把這個點也成為“四邊形的內心”.
(1)試舉出一個有內心的四邊形.
(2)如圖1,已知點O是四邊形ABCD的內心,求證:AB+CD=AD+BC.
(3)如圖2,Rt△ABC中,∠C=90°.O是△ABC的內心.若直線DE截邊AC、BC于點D.E,且O仍然是四邊形ABED的內心.這樣的直線DE可畫多少條?請在圖2中畫出一條符合條件的直線DE,并簡單說明作法.
(4)問題(3)中,若AC=3,BC=4,滿足條件的一條直線DE∥AB,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com