A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 利用旋轉和平移的性質得出,∠A′B′C=60°,AB=A′B′=A′C=4,進而得出△A′B′C是等邊三角形,即可得出BB′以及∠B′A′C的度數
解答 解:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,
∴∠A′B′C=60°,AB=A′B′=A′C=4,
∴△A′B′C是等邊三角形,
∴B′C=4,∠B′A′C=60°,
∴BB′=6-4=2,
故選:A.
點評 本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等邊三角形的判斷與性質.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 12 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com