分析 (1)在直角三角形AOB中,由OA與OB的長,利用勾股定理求出AB的長即可;
(2)過C作y軸垂線,過D作x軸垂線,分別交于點E,F,可得三角形CBE與三角形ADF與三角形AOB全等,利用全等三角形對應邊相等,確定出C與D坐標即可;
(3)作出B關于x軸的對稱點B′,連接B′D,與x軸交于點M,連接BD,BM,此時△MDB周長最小,求出此時M的坐標即可.
解答 解:(1)對于直線y=$\frac{1}{2}$x+1,令x=0,得到y=1;令y=0,得到x=-2,
∴A(-2,0),B(0,1),
在Rt△AOB中,OA=2,OB=1,
根據勾股定理得:AB=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$;
(2)作CE⊥y軸,DF⊥x軸,可得∠CEB=∠AFD=∠AOB=90°,
∵正方形ABCD,
∴BC=AB=AD,∠DAB=∠ABC=90°,
∴∠DAF+∠BAO=90°,∠ABO+∠CBE=90°,
∵∠DAF+∠ADF=90°,∠BAO+∠ABO=90°,
∴∠BAO=∠ADF=∠CBE,
∴△BCE≌△DAF≌ABO,
∴BE=DF=OA=2,CE=AF=OB=1,
∴OE=OB+BE=2+1=3,OF=OA+AF=2+1=3,
∴C(-1,3),D(-3,2);
(3)找出B關于x軸的對稱點B′,連接B′D,與x軸交于點M,此時△BMD周長最小,
∵B(0,1),
∴B′(0,-1),
設直線B′D的解析式為y=kx+b,
把B′與D坐標代入得:$\left\{\begin{array}{l}{b=-1}\\{-3k+b=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=-1}\end{array}\right.$,即直線B′D的解析式為y=-x-1,
令y=0,得到x=-1,即M(-1,0).
點評 此題屬于一次函數綜合題,涉及的知識有:待定系數法確定一次函數解析式,正方形的性質,全等三角形的判定與性質,一次函數與坐標軸的交點,勾股定理,熟練掌握定理及性質是解本題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com