【題目】如圖,點 C 為 Rt△ACB 與 Rt△DCE 的公共點,∠ACB=∠DCE=90°,連 接 AD、BE,過點 C 作 CF⊥AD 于點 F,延長 FC 交 BE 于點 G.若 AC=BC=25,CE=15, DC=20,則的值為___________.
【答案】
【解析】
過 E作 EH⊥GF于 H,過 B作 BP⊥GF于 P,依據△EHG∽△BPG,可得=
,再根據△DCF∽△CEH,△ACF∽△CBP,即可得到 EH=
CF,BP=CF,進 而得出
=
.
如圖,過 E作 EH⊥GF于 H,過 B 作 BP⊥GF于P,則∠EHG=∠BPG=90°,
又∵∠EGH=∠BGP,
∴△EHG∽△BPG,
∴=
,
∵CF⊥AD,
∴∠DFC=∠AFC=90°,
∴∠DFC=∠CHF,∠AFC=∠CPB, 又∵∠ACB=∠DCE=90°,
∴∠CDF=∠ECH,∠FAC=∠PCB,
∴△DCF∽△CEH,△ACF∽△CBP,
∴,
∴EH=CF,BP=CF,
∴=
,
∴=
,
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BD于E.
(1)若BC=BD,,AD=15,求△ABD的周長.
(2)若∠DBC=45°,對角線AC、BD交于點O,F為AE上一點,且AF=2EO,求證:CF=AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD中,EF⊥AC,垂足為點H,分別交AD、AB及CB的延長線交于點E、M、F,且AE:FB=1:2,則AH:AC的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形的一條對角線將這個四邊形分成兩個三角形,如果這兩個三角形相似(不全等),那么我們將這條對角線叫做這個四邊形的相似對角線.
(1)如圖1,四邊形中,
,
,對角線
平分
,求證:
是四邊形
的相似對角線;
(2)如圖2,直線分別與
,
軸相交于
,
兩點,
為反比例函數
(
)上的點,若
是四邊形
的相似對角線,求反比例函數的解析式;
(3)如圖3,是四邊形
的相似對角線,點
的坐標為
,
軸,
,連接
,
的面積為
.過
,
兩點的拋物線
(
)與
軸交于
,
兩點,記
,若直線
與拋物線恰好有3個交點,求實數
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數與
(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.
(1)當m=4,n=20時.
①若點P的縱坐標為2,求直線AB的函數表達式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數量關系;若不能,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場經銷一種高檔水果,原價每千克50元.
(1)連續兩次降價后每千克32元,若每次下降的百分率相同,求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,經市場調查發現,在進貨價不變的情況下,商場決定采取適當的漲價措施,若每千克漲價1元,則日銷售量將減少20千克,那么每千克水果應漲價多少元時,商場獲得的總利潤(元)最大,最大是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在由邊長為個單位長度的小正方形組成的
網格中,已知點
,
,
,
均為網格線的交點.
(1)在網格中將繞點
順時針旋轉
,畫出旋轉后的圖形
;
(2)在網格中將放大
倍得到
,使
與
為對應點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題:如圖1,等腰直角三角形中,
,點
、點
分別在
邊上,且
,顯然
.
變式:若將圖1中的繞點
逆時針旋轉,使得點
在
的內部,其它條件不變(如圖2),請你猜想線段
與線段
的關系,并加以證明.
拓展:若圖2中的、
都為等邊三角形,其它條件不變(如圖3),則
__________,直線
與
相交所夾的銳角為__________°.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com