【題目】如圖,菱形ABCD中,EF⊥AC,垂足為點H,分別交AD、AB及CB的延長線交于點E、M、F,且AE:FB=1:2,則AH:AC的值為( 。
A.B.
C.
D.
【答案】B
【解析】
連接BD,如圖,利用菱形的性質得AC⊥BD,AD=BC,AD∥BC,再證明EF∥BD,接著判斷四邊形BDEF為平行四邊形得到DE=BF,設AE=x,FB=DE=2x,BC=3x,所以AE:CF=1:5,然后證明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性質得到AH:AC的值.
解:連接BD,如圖,
∵四邊形ABCD為菱形,
∴AC⊥BD,AD=BC,AD∥BC,
∵EF⊥AC,
∴EF∥BD,
而DE∥BF,
∴四邊形BDEF為平行四邊形,
∴DE=BF,
由AE:FB=1:2,設AE=x,FB=DE=2x,BC=3x,
∴AE:CF=x:5x=1:5,
∵AE∥CF,
∴△AEH∽△CFH,
∴AH:HC=AE:CF=1:5,
∴AH:AC=1:6.
故選:B.
科目:初中數學 來源: 題型:
【題目】安順市某商貿公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現決定降價銷售,已知這種干果銷售量(千克)與每千克降價
(元)
之間滿足一次函數關系,其圖象如圖所示:
(1)求與
之間的函數關系式;
(2)商貿公司要想獲利2090元,則這種干果每千克應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果關于x的不等式組至少有3個整數解,且關于x的分式方程
的解為整數,則符合條件的所有整數a的取值之和為( 。
A.﹣10B.﹣9C.﹣7D.﹣3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,△DCE是△ABC繞著點C順時針方向旋轉得到的,此時B、C、E在同一直線上.
(1)旋轉角的大小;
(2)若AB=10,AC=8,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了解學生“第二課堂“活動的選修情況,對報名參加A.跆拳道,B.聲樂,C.足球,D.古典舞這四項選修活動的學生(每人必選且只能選修一項)進行抽樣調查.并根據收集的數據繪制了圖①和圖②兩幅不完整的統計圖.
根據圖中提供的信息,解答下列問題:
(1)本次調查的學生共有 人;在扇形統計圖中,B所對應的扇形的圓心角的度數是 ;
(2)將條形統計圖補充完整;
(3)在被調查選修古典舞的學生中有4名團員,其中有1名男生和3名女生,學校想從這4人中任選2人進行古典舞表演.請用列表或畫樹狀圖的方法求被選中的2人恰好是1男1女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,己知,
.點
從點
開始沿
邊向點
以
的速度移動;點
從點
開始沿
邊內點
以
的速度移動.如果
、
同時出發,用
表示移動的時間
.
(1)用含的代數式表示:線段
_______
;
______
;
(2)當為何值時,四邊形
的面積為
.
(3)當與
相似時,求出
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,四邊形
是正方形,作直線
與正方形
邊所在直線相交于
(1)若直線經過點
,求
的值;
(2)若直線平分正方形
的面積,求
的坐標;
(3)若的外心在其內部,直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點 C 為 Rt△ACB 與 Rt△DCE 的公共點,∠ACB=∠DCE=90°,連 接 AD、BE,過點 C 作 CF⊥AD 于點 F,延長 FC 交 BE 于點 G.若 AC=BC=25,CE=15, DC=20,則的值為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地區教育部門為了解初中數學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統計圖和條形統計圖(均不完整).請根據統計圖中的信息解答下列問題:
(1)本次抽查的樣本容量是 ;
(2)在扇形統計圖中,“主動質疑”對應的圓心角為 度;
(3)將條形統計圖補充完整;
(4)如果該地區初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com