精英家教網 > 初中數學 > 題目詳情

【題目】設一次函數y=ax+ba,b是常數,且a0)的圖象A1,3)和B-1,-1)兩點.

1)求該一次函數的表達式.

2若點( 2)在(1)中的函數圖象上,求m的值.

若(1)中的函數圖象和y=-2x+n的函數圖象的交點在第一象限,求n的取值范圍.

【答案】1y=2x+1;(2)①m=3;②n>1

【解析】

(1)已知一次函數圖像經過兩點,用待定系數法即可求解函數解析式;

(2) ①把點( ,2)代入一次函數的解析式,即可求出m的值;

②聯立兩個一次函數的解析式,求出交點坐標,再根據交點在第一象限得到不等式組,求解即可得到答案;

解:(1)∵一次函數y=ax+b的圖象A13)和B-1,-1)兩點,

,

解得:

∴一次函數的解析式為:y=2x+1;

(2) ①點( ,2)在y=2x+1的函數圖象上,

,

即:,

∴解得:m=3;

∵聯立y=2x+1y=-2x+n得到,

,

即:

解得: ,

代入y=2x+1得到:

即: ,

交點坐標為:,

交點在第一象限,

,即

解得: ;

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2m+1x+m220

1)若該方程有兩個實數根,求m的最小整數值;

2)若方程的兩個實數根為x1,x2,且(x1x22+m221,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A的坐標為A1,0),等腰直角三角形ABC的邊ABx軸的正半軸上,∠ABC90°,點B在點A的右側,點C在第一象限.將△ABC繞點A逆時針旋轉75°,如果點C的對應點E恰好落在y軸的正半軸上,那么點C的坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題發現:(1)如圖1,在等腰直角三角形中,,點的中點,點上一點,將射線順時針旋轉于點,則的數量關系為____;

問題探究:(2)如圖2,在等腰三角形中,,點的中點,點上一點,將射線順時針旋轉于點,則的數量關系是否改變,請說明理由;

問題解決:(3)如圖3,點為正方形對角線的交點,點的中點,點為直線上一點,將射線順時針旋轉交直線于點,若,當面積為時,直接寫出線段的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:有一組鄰邊相等且對角互補的四邊形叫做等補四邊形.

(問題理解)

(1)如圖1,點AB、C⊙O上,∠ABC的平分線交⊙O于點D,連接AD、CD

求證:四邊形ABCD是等補四邊形;

(拓展探究)

(2)如圖2,在等補四邊形ABCD中,ABAD,連接AC,AC是否平分∠BCD?請說明理由;

(升華運用)

(3)如圖3,在等補四邊形ABCD中,ABAD,其外角∠EAD的平分線交CD的延長線于點F.若CD6,DF2,求AF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將邊長分別為10cm4cm的矩形紙片沿著虛線剪成兩個全等的梯形紙片.裁剪線與矩形較長邊所夾的銳角是45°,則梯形紙片中較短的底邊長為( 。

A.2cmB.2.5cmC.3cmD.3.5cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道求函數圖象的交點坐標,可以聯立兩個函數解析式組成方程組,方程組的解就是交點的坐標.如:求直線y2x+3y=﹣x+6的交點坐標,我們可以聯立兩個解析式得到方程組,解得,所以直線y2x+3y=﹣x+6的交點坐標為(1,5).請利用上述知識解決下列問題:

1)已知直線ykx2和拋物線yx22x+3

k4時,求直線與拋物線的交點坐標;

k為何值時,直線與拋物線只有一個交點?

2)已知點Aa0)是x軸上的動點,B0,4),以AB為邊在AB右側做正方形ABCD,當正方形ABCD的邊與反比例函數y的圖象有4個交點時,試求a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,聰聰想在自己家的窗口A處測量對面建筑物CD的高度,他首先量出窗口A到地面的距離(AB)為16m,又測得從A處看建筑物底部C的俯角α30°,看建筑物頂部D的仰角β53°,且AB,CD都與地面垂直,點A,B,CD在同一平面內.

1)求ABCD之間的距離(結果保留根號).

2)求建筑物CD的高度(結果精確到1m).(參考數據:,,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在同一坐標系中,二次函數與一次函數的圖像可能是(

A.B.

C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视