【題目】如圖,正方形的對角線
與
相交于點
,
的角平分線分別交
、
于
、
兩點.若
,則線段
的長為( )
A.B.
C.1D.
【答案】A
【解析】
過點M作ME⊥AC于E,根據正方形的性質和銳角三角函數即可求出AE=EM=1,△CON∽△CEM,再根據角平分線的性質可得BM=EM=1,從而求出正方形的邊長,即可求出對角線AC的長,然后根據相似三角形的性質列出比例式即可求出ON.
解:過點M作ME⊥AC于E
∵正方形的對角線
與
相交于點
∴∠CAB=45°,∠COB=∠ABC=90°,AB=BC,CO=AO=
∴△AEM為等腰三角形,OB∥EM
∴AE=EM=AM·sin∠EAM=,△CON∽△CEM,
∵CM平分∠ACB
∴BM=EM=1
∴AB=AM+MB=
在Rt△ABC中,AC=
∴CE=AC-AE=,CO=
∵△CON∽△CEM
∴
即
解得:ON=
故選A.
科目:初中數學 來源: 題型:
【題目】一個批發商銷售成本為20元/千克的某產品,根據物價部門規定:該產品每千克售價不得超過90元,在銷售過程中發現的售量y(千克)與售價x(元/千克)滿足一次函數關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數關系式;
(2)該批發商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產品每千克售價為多少元時,批發商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E為斜邊AB的中點,點P是射線BC上的一個動點,連接AP、PE,將△AEP沿著邊PE折疊,折疊后得到△EPA′,當折疊后△EPA′與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則此時BP的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一副直角三角板如圖放置,點C在FD的延長線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,則CD=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料,解決問題:
材料1:在研究數的整除時發現:能被5、25、125、625整除的數的特征是:分別看這個數的末一位、末兩位、末三位、末四位即可,推廣成一條結論;末位能被
整除的數,本身必能被
整除,反過來,末
位不能被
整除的數,本身也不可能被
整除,例如判斷992250能否被25、625整除時,可按下列步驟計算:
,
為整數,
能被25整除
,
不為整數,
不能被625整除
材料2:用奇偶位差法判斷一個數能否被11這個數整除時,可把這個數的奇位上的數字與偶位上的數字分別加起來,再求它們的差,看差能否被11整除,若差能被11整除,則原數能被11整除,反之則不能.
(1)若這個三位數能被11整除,則
;在該三位數末尾加上和為8的兩個數字,讓其成為一個五位數,該五位數仍能被11整除,求這個五位數
(2)若一個六位數p的最高位數字為5,千位數字是個位數字的2倍,且這個數既能被125整除,又能被11整除,求這個數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形中,
為
邊上一點
,
.將
沿
翻折得到
,
的延長線交邊
于點
,過點
作
交
于點
.
(1)求證:;
(2)如圖2,連接分別交
、
于點
、
.若
,探究
與
之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】湘潭市繼2017年成功創建全國文明城市之后,又準備爭創全國衛生城市.某小區積極響應,決定在小區內安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.
(1)求溫馨提示牌和垃圾箱的單價各是多少元?
(2)該小區至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,四邊形為正方形,點
在
軸上,點
在
軸上,且
,
,反比例函數
在第一象限的圖象經過正方形的頂點
.
(1)求點的坐標和反比例函數的關系式.
(2)如圖2,將正方形沿
軸向右平移 個單位長度時,點
恰好落在反比例函數的圖象.
(3)在(2)的情況下,連接并延長,交反比例函數的圖象于點
,點
是
軸上的一個動點(不與點
、
重合)
①當點的坐標為多少時,四邊形
是矩形?請說明理由.
②過點作
軸于點
,請問當點
的坐標為多少時,
與
相似?(直接寫出答案).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com