【題目】如圖,下列條件中,不能證明△ABC ≌ △DCB是( )
A. B.
C. D.
【答案】D
【解析】
全等三角形的判定定理有SAS,ASA,AAS,SSS,根據以上內容逐個判斷即可.
A. AB=DC,AC=DB,BC=BC,符合全等三角形的判定定理“SSS”,即能推出△ABC≌△DCB,故本選項錯誤;
B. AB=DC,∠ABC=∠DCB,BC=BC,符合全等三角形的判定定理“SAS”,即能推出△ABC≌△DCB,故本選項錯誤;
C. 在△AOB和△DOC中,
,
∴△AOB≌△DOC(AAS),
∴AB=DC,∠ABO=∠DCO,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠DCB,
在△ABC和△DCB中,
,
∴△ABC≌△DCB(SAS),
即能推出△ABC≌△DCB,故本選項錯誤;
D. 具備條件AB=DC,BC=BC,∠A=∠D不能推出△ABC≌△DCB,故本選項正確.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l的解析式為y=x﹣1,拋物線y=ax2+bx+2經過點A(m,0),B(2,0),D(1,
)三點.
(1)求拋物線的解析式及A點的坐標,并在圖示坐標系中畫出拋物線的大致圖象;
(2)已知點 P(x,y)為拋物線在第二象限部分上的一個動點,過點P作PE垂直x軸于點E,延長PE與直線l交于點F,請你將四邊形PAFB的面積S表示為點P的橫坐標x的函數,并求出S的最大值及S最大時點P的坐標;
(3)將(2)中S最大時的點P與點B相連,求證:直線l上的任意一點關于x軸的對稱點一定在PB所在直線上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一塊含45°的直角三角板ABC, AB=AC, ∠BAC=90°, 點D為射線CB上一點,且不與點C,點B重合,連接AD.過點A作線段AD的垂線l,在直線l上,截取AE=AD(點E與點C在直線AD的同側),連接CE.
(1)當點D在線段CB上時,如圖1,線段CE與BD的數量關系為____________,位置關系為___________;
(2)當點D在線段CB的延長線上時,如圖2,
①請將圖形補充完整;
②(1)中的結論是否仍成立?如果成立,請證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB的垂直平分線分別交AB,BC于D,E,AC的垂直平分線分別交AC,BC于F,G.
(1)若△AEG的周長為10,求線段BC的長.
(2)若∠BAC=128°,求∠EAG的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com