【題目】如圖.△ABC中,∠ACB=70°,將△ABC繞點B按逆時針方向旋轉得到△BDE(點D與點A是對應點,點E與點C是對應點),且邊DE恰好經過點C,則∠ABD的度數為( )
A.30°B.40°C.45°D.50°
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P的坐標為(,
),點Q的坐標為(
,
),且
,
,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q的“相關矩形”.下圖為點P,Q 的“相關矩形”的示意圖.
(1)已知點A的坐標為(1,0).
①若點B的坐標為(3,1)求點A,B的“相關矩形”的面積;
②點C在直線x=3上,若點A,C的“相關矩形”為正方形,求直線AC的表達式;
(2)⊙O的半徑為,點M的坐標為(m,3).若在⊙O上存在一點N,使得點M,N的“相關矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=k1x+b的圖象與反比例函數y=的圖象交于A(3,﹣2)、B(﹣2,n)兩點,與x軸交于點C.
(1)求k2,n的值;
(2)請直接寫出不等式k1x+b>的解集;
(3)將x軸下方的圖象沿x軸翻折,點A落在點A′處,連接A'B、A'C,求△A'BC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O在ABCD的AD邊上,⊙O經過A、B、C三點,點E在⊙O外,且OE⊥BC,垂足為F.
(1)若EC是⊙O的切線,∠A=65°,求∠ECB的度數;
(2)若OF=4,OD=1,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,點D為AB邊上一點(不與點B重合),連接CD,將線段CD繞點D逆時針旋轉90°,點C的對應點為E,連接BE.若AB=2,則△BDE面積的最大值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC的AB邊為圓O的弦,AC、BC分別交圓O于D、E,弧AD=弧BE,∠C=60°;
(1)求證:△ABC為等邊三角形;
(2)如圖2,F為弧AD上一點,連接FE并延長至G,連接BG,若∠AFB=∠G,求∠FBG的正弦值;
(3)如圖3,在(2)的條件下,連接FC并延長交BG延長線于H,若CF=CH,AF=7,HG=12,求線段BF的長度。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=,y=﹣2018x2+2019,y=2018x2共有的性質是( )
A.開口向上
B.對稱軸是y軸
C.當x>0時,y隨x的增大而增大
D.都有最低點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,AC=CB,點E,F分別是AC,BC上的點,△CEF的外接圓交AB于點Q,D.
(1)如圖1,若點D為AB的中點,求證:∠DEF=∠B;
(2)在(1)問的條件下:
①如圖2,連結CD,交EF于H,AC=4,若△EHD為等腰三角形,求CF的長度.
②如圖2,△AED與△ECF的面積之比是3:4,且ED=3,求△CED與△ECF的面積之比(直接寫出答案).
(3)如圖3,連接CQ,CD,若AE+BF=EF,求證:∠QCD=45°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com