精英家教網 > 初中數學 > 題目詳情

【題目】如圖,CD的直徑,弦ABCD于點G,直線EF相切與點D,則下列結論中不一定正確的是

AAG=BG BABEF CADBC DABC=ADC

【答案】C。

【解析】根據垂徑定理,切線的性質,平行的判定,圓周角定理逐一作出判斷:

ACD的直徑,弦ABCD于點G,由垂徑定理可知:AG=BG。結論正確。

B直線EF相切與點DEFAD。ABEF。結論正確。

C)要ADBC,即要ABC=BAD,由圓周角定理,ABC=ADC,即要BAD =ADC,即要AG=DG,但沒此條件。結論錯誤。

D∵∠ABCADC是同弧所對的圓周角,∴∠ABC=ADC。結論正確。

故選C。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,OABC的內切圓,三個切點分別為D、E、F.若BF=2,AF=3,則ABC的面積是( 。

A. 6 B. 7 C. 12 D. 7

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在等腰三角形ABC中,∠A、∠B、∠C的對邊分別為a、b、c,已知a=3,b和c是關于x的方程x2+mx+2-m=0的兩個實數根.

(1)ABC的周長.

(2)ABC的三邊均為整數時的外接圓半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2﹣2x+m+1x軸交于A(x1 , 0)、B(x2 , 0)兩點,且x1<0,x2>0,與y軸交于點C,頂點為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個實根,則x1+x2=﹣ ,x1x2=

(1)m的取值范圍;

(2)OA=3OB,求拋物線的解析式;

(3)(2)中拋物線的對稱軸PD上,存在點Q使得△BQC的周長最短,試求出點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果一元二次方程ax2+bx+c=0 的兩根 x1,x2均為正數,其中x1>x2,且滿足1<x1﹣x2<2,那么稱這個方程有友好根”.

(1)方程(x﹣)(x﹣)=0_____友好根(填:“沒有”);

(2)已知關于x x2﹣(t﹣1)x+t﹣2=0友好根,求 t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AD是ABC的角平分線,O經過A、B、D三點,過點B作BEAD,交O于點E,連接ED.

(1)求證:EDAC;

(2)連接AE,試證明:ABCD=AEAC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市在端午節期間開展優惠活動,凡購物者可以通過轉動轉盤的方式享受折扣優惠,本次活動共有兩種方式,方式一:轉動轉盤甲,指針指向 A區域時,所購買物品享受9折優惠、指針指向其它區域無優惠;方式二: 同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針指向每個區域的字母相同,所購買物品享受8折優惠,其它情況無優惠.在每個轉盤中,指針指向每個區城的可能性相同(若指針指向分界線,則重新轉動轉盤)

(1)若顧客選擇方式一,則享受 9 折優惠的概率為_______;

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優惠的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中間用相同的白色正方形瓷磚,四周用相同的黑色長方形瓷磚鋪設矩形地面,請觀察圖形并解答下列問題.

(1)問:依據規律在第6個圖中,黑色瓷磚多少塊,白色瓷磚有多少塊;

(2)某新學校教室要裝修,每間教室面積為68m2 , 準備定制邊長為0.5米的正方形白色瓷磚和長為0.5米、寬為0.25米的長方形黑色瓷磚來鋪地面.按照此圖案方式進行裝修,瓷磚無須切割,恰好完成鋪設.已知白色瓷磚每塊20元,黑色瓷磚每塊10元,請問每間教室瓷磚共需要多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形中,,點是邊上的動點(含端點),連結,以所在直線為對稱軸作點的對稱點,連結,,,點,,分別是線段,的中點,連結

1)求證:四邊形是菱形;

2)若四邊形的面積為,求的長;

3)以其中兩邊為鄰邊構造平行四邊形,當所構造的平行四邊形恰好是菱形時,這時該菱形的面積是________

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视