【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③MD=2AM=4EM;④AM=MF.其中正確結論的個數是( )
A. 4個B. 3個C. 2個D. 1個
【答案】B
【解析】
根據正方形的性質可得AB=BC=AD,∠ABC=∠BAD=90°,再根據中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據鄰補角的定義可得∠AME=90°,從而判斷①正確;根據中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據直角三角形的性質判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出③正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=
MF,判斷出④正確.
解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
在△ABF和△DAE中,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴
∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故③正確;
設正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,
∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
即
,故④正確
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖,則下列4個結論:①abc<0;②2a+b=0;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結論的個數是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點B向下旋轉45°,使得BCD落在BC′D′的位置(如圖3所示),此時C′D′⊥OM,AD′∥OM,AD′=16cm,求點B到水平桌面OM的距離,(參考數據:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結果精確到1cm)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】實踐與操作:我們在學習四邊形的相關知識時,認識了平行四邊形、矩形、菱形、正方形等一些特殊的四邊形,下面我們用尺規作圖的方法來體會它們之間的聯系.如圖,在□ABCD中,AB=4,BC=6,∠ABC=60°,請完成下列任務:
(1)在圖1中作一個菱形,使得點A、B為所作菱形的2個頂點,另外2個頂點在□ABCD的邊上;在圖2中作一個菱形,使點B、D為所作菱形的2個頂點,另外2個頂點在□ABCD的邊上;(尺規作圖,保留作圖痕跡,不寫作法)
(2)請在圖形下方橫線處直接寫出你按(1)中要求作出的菱形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與y軸交于點,與反比例函數
在第二象限內的圖象相交于點
.
(1)求直線AB的解析式;
(2)將直線AB向下平移9個單位后與反比例函數的圖象交于點C和點E,與y軸交于點D,求的面積;
(3)設直線CD的解析式為,根據圖象直接寫出不等式
的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進甲、乙兩種型號的商品。每件甲種商品的進價比每件乙種商品的進價少2元,且用80元購進甲種商品的數量與用100元購進乙種商品的數量相同.
(1)求甲、乙兩種商品每件的進價各為多少元;
(2)每件甲種商品售價為12元,每件乙種商品售價為15元,該超市本次購進甲種商品的數量比購進乙種商品的數量的3倍少5件,要使兩種商品全部售出后所獲總利潤超過371元,求該超市本次至少購進乙種商品多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學準備舉辦一次演講比賽,每班限定兩人報名,初三(1)班的三位同學(兩位女生,一位男生)都想報名參加,班主任李老師設計了一個摸球游戲,利用已學過的概率知識來決定誰去參加比賽,游戲規則如下:在一個不透明的箱子里放3個大小質地完全相同的乒乓球,在這3個乒乓球上分別寫上、
、
(每個字母分別代表一位同學,其中
、
分別代表兩位女生,
代表男生),攪勻后,李老師從箱子里隨機摸出一個乒乓球,不放回,再次攪勻后隨機摸出第二個乒乓球,根據乒乓球上的字母決定誰去參加比賽。
(1)求李老師第一次摸出的乒乓球代表男生的概率;
(2)請用列表或畫樹狀圖的方法求恰好選定一名男生和一名女生參賽的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,AB是⊙O的一條弦,AP是⊙O的切線.作BM=AB并與AP交于點 M,延長MB交AC于點E,交⊙O于點D,連接AD、BC.
(1)求證:AB=BE;
(2)若BE=3,OC=,求BC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com