分析 (1)易得點C坐標,根據OB=OC=3OA可得點A,B坐標,代入二次函數解析式即可.
(2)可求得E,D坐標,得到△BCE的形狀,進而可把∠CBE轉移為∠DBO,求解.
解答 解:(1)拋物線y=ax2+bx-3與y軸交于點C(0,-3),
∵OB=OC=3OA,
∴A(-1,0),B(3,0),代入y=ax2+bx-3,
得$\left\{\begin{array}{l}{a-b-3=0}\\{9a+3b-3=0}\end{array}\right.$,
∴y=x2-2x-3.
(2)由y=-$\frac{1}{3}$x+1,得D(0,1)
由y=x2-2x-3得到頂點E(1,-4),
∴BC=3$\sqrt{2}$,CE=$\sqrt{2}$,BE=2$\sqrt{5}$,
∵BC2+CE2=BE2,
∴△BCE為直角三角形.
∴tanβ=$\frac{CE}{CB}$=$\frac{1}{3}$.
又∵Rt△DOB中,tan∠DBO=$\frac{OD}{OB}$=$\frac{1}{3}$.
∴∠DBO=∠β,
∠α-∠β=∠α-∠DBO=∠OBC=45°.
點評 此題考查了二次函數的綜合題,關鍵是熟練掌握待定系數法求二次函數解析式、勾股定理的逆定理、三角函數等重要知識.綜合性較強,難度中等.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com