【題目】如圖,P是等邊三角形ABC內一點,將線段AP繞點A順時針旋轉60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為 .
【答案】
【解析】解:連結PQ,如圖,
∵△ABC為等邊三角形,
∴∠BAC=60°,AB=AC,
∵線段AP繞點A順時針旋轉60°得到線段AQ,
∴AP=PQ=6,∠PAQ=60°,
∴△APQ為等邊三角形,
∴PQ=AP=6,
∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,
∴∠CAP=∠BAQ,
在△APC和△ABQ中, ,
∴△APC≌△ABQ,
∴PC=QB=10,
在△BPQ中,∵PB2=82=64,PQ2=62 , BQ2=102 ,
而64+36=100,
∴PB2+PQ2=BQ2 ,
∴△PBQ為直角三角形,∠BPQ=90°,
∴S四邊形APBQ=S△BPQ+S△APQ= ×6×8+
×62=24+9
.所以答案是24+9
.
【考點精析】本題主要考查了等邊三角形的性質和旋轉的性質的相關知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”
(1)概念理解:
請你根據上述定義舉一個等鄰角四邊形的例子;
(2)問題探究;
如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點P,連結AC,BD,試探究AC與BD的數量關系,并說明理由;
(3)應用拓展;
如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點A順時針旋轉角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當凸四邊形AD′BC為等鄰角四邊形時,求出它的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:
(1)這次被調查的學生共有人;
(2)請你將條形統計圖補充完成;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線C:y=x2﹣3x+m,直線l:y=kx(k>0),當k=1時,拋物線C與直線l只有一個公共點.
(1)求m的值;
(2)若直線l與拋物線C交于不同的兩點A,B,直線l與直線l1:y=﹣3x+b交于點P,且 +
=
,求b的值;
(3)在(2)的條件下,設直線l1與y軸交于點Q,問:是否在實數k使S△APQ=S△BPQ?若存在,求k的值,若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB為半圓O的直徑,C為半圓O上一點,連接AC,BC,過點O作OD⊥AC于點D,過點A作半圓O的切線交OD的延長線于點E,連接BD并延長交AE于點F.
(1)求證:AEBC=ADAB;
(2)若半圓O的直徑為10,sin∠BAC= ,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了豐富同學們的課余生活,某學校舉行“親近大自然”戶外活動,現隨機抽取了部分學生進行主題為“你最想去的景點是?”的問卷調查,要求學生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)”四個景點中選擇一項,根據調查結果,繪制了如下兩幅不完整的統計圖.
請解答下列問題:
(1)本次調查的樣本容量是;
(2)補全條形統計圖;
(3)若該學校共有3600名學生,試估計該校最想去濕地公園的學生人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com