精英家教網 > 初中數學 > 題目詳情

【題目】在學習《圓》這一單元時,我們學習了圓周角定理的推論:圓內接四邊形的對角互補;事實上,它的逆命題:對角互補的四邊形的四個頂點共圓,也是一個真命題.在圖形旋轉的綜合題中經常會出現對角互補的四邊形,那么,我們就可以借助“對角互補的四邊形的四個頂點共圓”,然后借助圓的相關知識來解決問題,例如:

已知:是等邊三角形,點內一點,連接,將線段逆時針旋轉得到線段,連接,,并延長于點.當點在如圖所示的位置時:

1)觀察填空:

①與全等的三角形是________

的度數為       

2)利用題干中的結論,證明:,四點共圓;

3)直接寫出線段,之間的數量關系.____________________

【答案】1)①:②;(2)見解析;(3

【解析】

1根據旋轉的性質和等邊三角形的性質可證△ACD≌△BCE

根據已推導出的全等三角形和三角形內角和進行角度轉化,可得∠AFB的大小;

2)根據△ACD≌△BCE,推導得出四邊形CDFE,從而證共圓;

3)先推導出△BDF是等邊三角形,可證△ABD≌△CBP,得出AD=FC,從而得出數量關系.

1①∵△ABC是等邊三角形

AB=AC=BC,∠BAC=∠ACB=∠ABC=60°

∵將線段逆時針旋轉得到線段

CE=CD,∠DCE=60°

∴△DCE是等邊三角形

∴∠DCE=60°

∵∠ACD+DCB=60°,∠BCE+∠DCB=60°

∴∠ACD=BCE

∴△ACD≌△BCE(SAS)

②∵ACD≌△BCE

∴∠EBC=∠DAC

∵∠DAC+∠BAD=∠BAC=60°

∴∠FBC+∠BAD=60°

∴∠AFB=180°-∠ABC∠FBC∠BAF=180°60°60°=60°

2

,

,四點共圓;

(證明不唯一)

3)結論:,如下圖,連接BD

∵△ACD≌△BCE

∴∠CBE=∠CADAD=BE

∵∠CAD+∠BAD=60°,∠BAD+∠FBC=60°

∴∠BAD+∠ABD=∠BDF=60°

∵∠AFB=60°

∴△BDF是等邊三角形

DF=BF,∴FD+FE=BE

∴△ABD≌△CBF(SAS)

∴AD=FC

FD+FE=FC

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某班數學興趣小組對函數的圖象和性質將進行了探究,探究過程如下,請補充完整.

1)自變量的取值范圍是除0外的全體實數,的幾組對應值列表如下:

1

2

3

6

1

2

6

1

3

2

1

其中,_________

2)根據上表數據,在如圖所示的平面直角坐標系中描點并畫出了函數圖象的一部分,請畫出該函數圖象的另一部分.

3)觀察函數圖象,寫出一條函數性質.

4)進一步探究函數圖象發現:

①函數圖象與軸交點情況是________,所以對應方程的實數根的情況是________

②方程_______個實效根;

③關于的方程2個實數根,的取值范圍是________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正方形ABCD的邊長為1,點P為正方形內一動點,若點MAB上,且滿足△PBC∽△PAM,延長BPAD于點N,連結CM.分析下列結論:①APBN;②BMDN;③點P一定在以CM為直徑的圓上;④正方形內不存在點P使得PC.其中結論正確的個數是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AC=BC=4,∠ACB=90°,D為邊AB上一動點(不與AB重合),⊙DBC切于E點,E點關于CD的對稱點F在△ABC的一邊上,則BD=______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線Gx軸交于A、B兩點(點A在點B的左側),與y軸交于C點;一次函數)的圖像為直線

1)求AB兩點的坐標;

2)當1≤x≤2時,,試說明:拋物線G的頂點不在直線上;

3)設,直線與線段AC交于D點,與y軸交于E點,與拋物線G的對稱軸交于F 點,當A、C兩點到直線距離相等時,是否存在整數n,使F點在直線BE的上方?若存在,求n的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,任意四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA上的點,對于四邊形EFGH的形狀,某班學生在一次數學活動課中,通過動手實踐,探索出如下結論,其中錯誤的是(

A.當E,F,G,H是各邊中點,且AC=BD時,四邊形EFGH為菱形

B.當E,F,G,H是各邊中點,且ACBD時,四邊形EFGH為矩形

C.當E,F,G,H不是各邊中點時,四邊形EFGH可以為平行四邊形

D.當E,F,G,H不是各邊中點時,四邊形EFGH不可能為菱形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一組數據:3,44,4,5.若拿掉一個數據4,則發生變化的統計量是(

A.極差B.方差C.中位數D.眾數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在邊長為2的正方形ABCD中,點EAD邊上的中點,BF平分∠EBCCD于點F,過點FFGABBE于點H,則GH的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ABy=kx+bx軸.y軸分別相交于點A1,0)和點B02),以線段AB為邊在第一象限作正方形ABCD

1)求直線AB的解析式;

2)求點D的坐標;

3)若雙曲線k0)與正方形的邊CD紿終有一個交點,求k的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视