精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,一次函數yax+b的圖象與反比例函數yk為常數,k≠0)的圖象交于二、四象限內的A、B兩點,與y軸交于C點.點A的坐標為(m,3),點B與點A關于yx成軸對稱,tanAOC

1)求k的值;

2)直接寫出點B的坐標,并求直線AB的解析式;

3Py軸上一點,且SPBC2SAOB,求點P的坐標.

【答案】1k=﹣3;(2B3,﹣1),直線AB的解析式為y=﹣x+2;(3P點的坐標為(0)或(0,﹣).

【解析】

1)作ADy軸于D,根據正切函數,可得AD的長,得到A的坐標,根據待定系數法,可得k的值;

2)根據題意即可求得B點的坐標,然后根據待定系數法即可求得直線AB的解析式;

3)先根據SAOBSAOC+SBOC求得AOB的面積為4,然后設P0t),得出SPBC|t2|×3|t2|,由SPBC2SAOB列出關于t的方程,解得即可.

解:(1)作ADy軸于D

∵點A的坐標為(m,3),

OD3,

tanAOC

,即,

AD1

A(﹣1,3),

∵在反比例函數yk為常數,k≠0)的圖象上,

k=﹣1×3=﹣3;

2)∵點B與點A關于yx成軸對稱,

B3,﹣1),

A、B在一次函數yax+b的圖象上,

,解得,

∴直線AB的解析式為y=﹣x+2

3)連接OC,

由直線ABy=﹣x+2可知,C02),

SAOBSAOC+SBOC×2×1+×2×34

Py軸上一點,

∴設P0,t),

SPBC|t2|×3|t2|

SPBC2SAOB,

|t2|2×4

tt=﹣,

P點的坐標為(0)或(0,﹣).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某汽車專賣店經銷某種型號的汽車.已知該型號汽車的進價為萬元/輛,經銷一段時間后發現:當該型號汽車售價定為萬元/輛時,平均每周售出輛;售價每降低萬元,平均每周多售出輛.

1)當售價為萬元/輛時,平均每周的銷售利潤為___________萬元;

2)若該店計劃平均每周的銷售利潤是萬元,為了盡快減少庫存,求每輛汽車的售價.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,排球運動員站在點O處練習發球,將球從O點正上方2 mA處發出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x-6)2+h.已知球網與O點的水平距離為9 m,高度為2.43 m,球場的邊界距O點的水平距離為18 m.

(1)h=2.6時,求yx的關系式(不要求寫出自變量x的取值范圍)

(2)h=2.6時,球能否越過球網?球會不會出界?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規定每千克售價不低于成本,且不高于80元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數關系,部分數據如下表:

(1)求yx之間的函數表達式;

(2)設商品每天的總利潤為W(元),求Wx之間的函數表達式(利潤=收入-成本);

(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網格中,ABCDEF的頂點都在格點上,P1,P2,P3,P4,P5DEF邊上的5個格點,請按要求完成下列各題:

(1)試證明三角形ABC為直角三角形;

(2)判斷ABCDEF是否相似,并說明理由;

(3)畫一個三角形,使它的三個頂點為P1,P2,P3,P4,P5中的3個格點并且與ABC相似(要求:不寫作法與證明).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一般的,如果二次函數y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數根.——蘇科版《數學》九年級(下冊)P21參考上述教材中的話,判斷方程x2﹣2x=﹣2實數根的情況是 ( )

A. 有三個實數根 B. 有兩個實數根 C. 有一個實數根 D. 無實數根

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解某小區居民使用共享單車次數的情況,某研究小組隨機采訪該小區的10位居民,得到這10位居民一周內使用共享單車的次數統計如下:

使用次數

0

5

10

15

20

人數

1

1

4

3

1

1)這10位居民一周內使用共享單車次數的中位數是 次,眾數是 次.

2)若小明同學把數據“20”看成了“30”,那么中位數,眾數和平均數中不受影響的是 .(填中位數,眾數平均數

3)若該小區有2000名居民,試估計該小區居民一周內使用共享單車的總次數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形中,

1)請用尺規在邊上確定一點,連接、,使平分;(保留作圖痕跡,不寫作法)

2)判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙OAB于點D,E的中點.

1)求證:∠ACD=∠DEC;(2)延長DECB交于點P,若PB=BO,DE=2,求PE的長

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视