【題目】閱讀并解答:
①方程x2﹣2x+1=0的根是,則有
.
②方程2x2﹣x﹣2=0的根是=
,
=
,則有
,
.
③方程3x2+4x﹣7=0的根是,
,則有
,
.
(1)根據以上①②③請你猜想:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根為,那么
與系數a、b、c有什么關系?請寫出你的猜想并證明你的猜想;
(2)利用你的猜想結論,解決下面的問題:
已知關于x的方程x2+(2k+1)x+k2﹣2=0有實數根,且
,求k的值
【答案】(1),
,證明見解析;(2)1.
【解析】
(1)由①②③中兩根之和與兩根之積的結果可以看出,兩根之和正好等于一次項系數與二次項系數之比的相反數,兩根之積正好等于常數項與二次項系數之比.
(2)欲求k的值,先把代數式x12+x22變形為兩根之積或兩根之和的形式,然后與兩根之和公式、兩根之積公式聯立組成方程組,解方程組即可求k值.
(1)猜想為:設ax2+bx+c=0(a≠0)的兩根為x1、x2,則有,
.
理由:設x1、x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,
那么由求根公式可知,,
.
于是有,
,
綜上得,設ax2+bx+c=0(a≠0)的兩根為x1、x2,
則有,
.
(2)x1、x2是方程x2+(2k+1)x+k2﹣2=0的兩個實數根
∴x1+x2=﹣(2k+1),x1x2=k2﹣2,
又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2
∴[﹣(2k+1)]2﹣2×(k2﹣2)=11
整理得k2+2k﹣3=0,
解得k=1或﹣3,
又∵△=[﹣(2k+1)]2﹣4(k2﹣2 )≥0,解得k≥﹣,
∴k=1.
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2﹣(2m﹣1)x+m2+1=0有兩個不相等實數根x1,x2
(1)求實數m的取值范圍;
(2)若x12+x22=x1x2+3時,求實數m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與反比例函數的圖象相交于A(m,4)、B(2,﹣6)兩點,過A作AC⊥x軸交于點C,連接OA.
(1)分別求出一次函數與反比例函數的表達式;
(2)若直線AB上有一點M,連接MC,且滿足S△AMC=3S△AOC,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市在春節期間開展優惠活動,凡購物者可以通過轉動轉盤的方式享受折扣和優惠,在每個轉盤中指針指向每個區域的可能性均相同,若指針指向分界線,則重新轉動轉盤,區域對應的優惠方式如下,A1,A2,A3區域分別對應9折8折和7折優惠,B1,B2,B3,B4區域對應不優惠?本次活動共有兩種方式.
方式一:轉動轉盤甲,指針指向折扣區域時,所購物品享受對應的折扣優惠,指針指向其他區域無優惠;
方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針均指向折扣區域時,所購物品享受折上折的優惠,其他情況無優惠.
(1)若顧客選擇方式一,則享受優惠的概率為 ;
(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優惠的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸相交于點C(0,﹣3)
(1)求該二次函數的解析式;
(2)設E是y軸右側拋物線上異于點A的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH,則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
(3)設P點是x軸下方的拋物線上的一個動點,連接PA、PC,求△PAC面積的取值范圍,若△PAC面積為整數時,這樣的△PAC有幾個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知點在線段
上,在
和
中,
,
,
,且
為
的中點.
(1)連接并延長交
于
,求證:
;
(2)直接寫出線段與
的關系: ;
(3)若將繞點
逆時針旋轉,使點
在線段
的延長線上(如圖②所示位置),則(2)中的結論是否仍成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖像與x軸交于A、B兩點,與y軸交于點C,其頂點為P,連接PA、AC、CP,過點C作y軸的垂線l.已知頂點P的坐標為(-3,-4),線段PC之長為3
(1)求二次函數解析式。
(2)M為直線l上一點,且以M,C,O為頂點的三角形與以A,C,O為頂點的三角形相似,請直接寫出點M的坐標。
(3)直線l上是否存在點D,使△PBD的面積等于△PAC的面積的3倍?若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△PAB中,M.N是AB上兩點,△PMN是等邊三角形,∠APM=∠B.
(1)求證:∠A=∠BPN;
(2)求證:MN2=AM·BN;
(3)若AP=,AM=1,求線段MN,PB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com