【題目】如圖,拋物線y=ax2﹣2ax+m的圖象經過點P(4,5),與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,且S△PAB=10.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點Q使得△PAQ和△PBQ的面積相等?若存在,求出Q點的坐標,若不存在,請說明理由;
(3)過A、P、C三點的圓與拋物線交于另一點D,求出D點坐標及四邊形PACD的周長.
【答案】(1)y=x2﹣2x﹣3;(2)點Q的坐標為:(﹣2,5)或(﹣,﹣
);(3)6
+4
.
【解析】
(1)因為拋物線y=ax2﹣2ax+m,函數的對稱軸為:x=1,S△PAB=10=×AB×yP=
AB×5,解得AB=4,即可求解;(2)分A、B在點Q(Q′)的同側;點A、B在點Q的兩側兩種情況,分別求解即可;(3)過點P作PO′⊥x軸于點O′,則點O′(4,0),則AO′=PO′=5,而CO′=5,故圓O′是過A、P、C三點的圓,即可求解.
解:
(1)y=ax2﹣2ax+m,函數的對稱軸為:x=1,
S△PAB=10=×AB×yP=
AB×5,解得:AB=4,
故點A、B的坐標分別為:(﹣1,0)、(3,0),
拋物線的表達式為:y=a(x+1)(x﹣3),
將點P的坐標代入上式并解得:a=1,
故拋物線的表達式為:y=x2﹣2x﹣3…①;
(2)①當A、B在點Q(Q′)的同側時,如圖1,
△PAQ′和△PBQ′的面積相等,則點P、Q′關于對稱軸對稱,
故點Q′(﹣2,5);
②當A、B在點Q的兩側時,如圖1,
設PQ交x軸于點E,分別過點A、B作PQ的垂線交于點M、N,
△PAQ和△PBQ的面積相等,則AM=BN,
而∠BEN=∠AEM,∠AME=∠BNE=90°,
∴△AME≌△BNE(AAS),
∴AE=BE,
即點E是AB的中點,則點E(1,0),
將點P、E的坐標代入一次函數表達式并解得:
直線PQ的表達式為:y=x﹣
…②,
聯立①②并解得:x=﹣或4(舍去4),
故點Q(﹣,﹣
),
綜上,點Q的坐標為:(﹣2,5)或(﹣,﹣
);
(3)過點P作PO′⊥x軸于點O′,則點O′(4,0),則AO′=PO′=5,而CO′=5,
故圓O′是過A、P、C三點的圓,
設點D(m,m2﹣2m﹣3),點O′(4,0),則DO′=5,
即(m﹣4)2+(m2﹣2m﹣3)2=25,
化簡得:m(m+1)(m﹣1)(m﹣4)=0,
解得:m=0或﹣1或1或4(舍去0,﹣1,4),
故:m=1,
故點D(1,﹣4);
四邊形PACD的周長=PA+AC+CD+PD=.
科目:初中數學 來源: 題型:
【題目】某淘寶網店銷售臺燈,成本為每個30元.銷售大數據分析表明:當每個臺燈售價為40元時,平均每月售出600個;若售價每下降1元,其月銷售量就增加200個.
(1)若售價下降1元,每月能售出 個臺燈,若售價下降x元(),每月能售出 個臺燈.
(2)為迎接“雙十一”,該網店決定降價促銷,在庫存為1210個臺燈的情況下,若預計月獲利恰好為8400元,求每個臺燈的售價.
(3)月獲利能否達到9600元,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標系中,經過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫做該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.問題與探究:如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A,C分別在x軸和y軸上,拋物線y=(x﹣a)2+b經過B,C兩點,頂點D在正方形內部.若點D有一條特征線是y=x+2,則此拋物線的表達式是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)請用畫樹狀圖的方法求取出的兩張卡片數字之和為奇數的概率;
(2)若取出的兩張卡片數字之和為奇數,則甲勝;取出的兩張卡片數字之和為偶數,則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿.當每個房間 每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據規定,每個房間每天的房價不得高于340元.設每個房間的房價增加x元(x為10的正整數倍).
(1)設一天訂住的房間數為y,直接寫出y與x的函數關系式及自變量x的取值范圍;
(2)設賓館一天的利潤為w元,求w與x的函數關系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,反比例函數
的圖象經過點
,
.
(1)求代數式mn的值;
(2)若二次函數的圖象經過點B,求代數式
的值;
(3)若反比例函數的圖象與二次函數
的圖象只有一個交點,且該交點在直線
的下方,結合函數圖象,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題8分)如圖某幢大樓頂部有廣告牌CD.張老師目高MA為1.60米,他站立在離大樓45米的A處測得大樓頂端點D的仰角為30°;接著他向大樓前進14米、站在點B處,測得廣告牌頂端點C的仰角為45°.(取 ,計算結果保留一位小數)
(1)求這幢大樓的高DH;
(2)求這塊廣告牌CD的高度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com