【題目】如圖,已知AB∥CD,點E在直線AB,CD之間.
(1)求證:∠AEC=∠BAE+∠ECD;
(2)若AH平分∠BAE,將線段CE沿射線CD平移至FG.
①如圖2,若∠AEC=90°,FH平分∠DFG,求∠AHF的度數;
②如圖3,若FH平分∠CFG,試判斷∠AHF與∠AEC的數量關系并說明理由.
【答案】(1)見解析;(2)①45°;②∠AHF=90°+∠AEC(或2∠AHF-∠AEC=180°),理由見解析.
【解析】
(1)過E作EF∥AB,可得∠A=∠AEN,利用平行于同一條直線的兩直線平行得到EN與CD平行,再得到一對內錯角相等,進而得出答案;
(2)①HF平分∠DFG,設∠GFH=∠DFH=x,根據平行線的性質可以得到∠AHF的度數,再由∠AEC=90°,根據角的關系易得∠AHF的度數;②設∠GFD=2x,∠BAH=∠EAH=y,根據角平分線的性質以及(1)中結論即可得到∠AHF與∠AEC的數量關系.
(1)如圖1,過點E作直線EN∥AB,
∵AB∥CD,
∴EN∥CD,
∴∠BAE=∠AEN,∠DCE=∠CEN,
∴∠AEC=∠AEN+∠CEN=∠BAE+∠ECD;
(2)∵AH平分∠BAE,
∴∠BAH=∠EAH,
①∵HF平分∠DFG,設∠GFH=∠DFH=x,
又CE∥FG,
∴∠ECD=∠GFD=2x,
又∠AEC=∠BAE+∠ECD,∠AEC=90°,
∴∠BAH=∠EAH=45°-x,
如圖2,過點H作l∥AB,
易證∠AHF=∠BAH+∠DFH=45°-x+x=45°;
②設∠GFD=2x,∠BAH=∠EAH=y,
∵HF平分∠CFG,
∴∠GFH=∠CFH=90°-x,
由(1)知∠AEC=∠BAE+∠ECD=2x+2y,
如圖3,過點H作l∥AB,
易證∠AHF-y+∠CFH=180°,
即∠AHF-y+90°-x=180°,∠AHF=90°+(x+y),
∴∠AHF=90°+∠AEC.(或2∠AHF-∠AEC=180°.)
科目:初中數學 來源: 題型:
【題目】閱讀下面的文字,解答問題:
材料一:大家知道是無理數,而無理數是無限不循環小數,因此
的小數部分我們不可能全部地寫出來,于是小明用
來表示
的小數部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為
的整數部分是1,將這個數減去其整數部分,差就是小數部分.由此我們得到一個真命題:
如果,其中
是整數,且
那么
.
材料二:已知是有理數,并且滿足等式
求
的值.
解:
,解得
請解答:
(1)如果,其中
是整數,且
那么
_______,
______.
(2)如果的小數部分為
,
的整數部分為
,求
的值;
(3)已知是有理數,并且滿足等式
,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△CDE均為等邊三角形,且點B,C,D在同一直線上,連結AD,BE,分別交CE和AC于點G,H,連結GH.
(1)請說出AD=BE的理由;
(2)試說出△BCH≌△ACG的理由;
(3)試猜想△CGH是什么特殊的三角形,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明乘坐家門口的公共汽車前往西安北站去乘高鐵,在行駛了三分之一路程時,小明估計繼續乘公共汽車到北站時高鐵將正好開出,于是小明下車改乘出租車,車速提高了一倍,結果趕在高鐵開車前半小時到達西安北站.已知公共汽車的平均速度是20千米/小時(假設公共汽車及出租車保持勻速行使,途中換乘、紅綠燈等待等情況忽略不計),請回答以下兩個問題:
(1)出租車的速度為_____千米/小時;
(2)小明家到西安北站有多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為更好地開展“傳統文化進校園”活動,隨機抽查了部分學生,了解他們最喜愛的傳統文化項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統計結果繪制成如圖不完整的頻數分布表及頻數分布條形圖.
最喜愛的傳統文化項目類型頻數分布表
項目類型 | 頻數 | 頻率 |
書法類 | 18 | a |
圍棋類 | 14 | 0.28 |
喜劇類 | 8 | 0.16 |
國畫類 | b | 0.20 |
根據以上信息完成下列問題:
(1)直接寫出頻數分布表中a的值;
(2)補全頻數分布條形圖;
(3)若全校共有學生1500名,估計該校最喜愛圍棋的學生大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a、b、c滿足|a﹣|+
+(c﹣4
)2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構成三角形?若能構成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com