【題目】如圖,正五邊形的邊長為2,連接對角線AD、BE、CE,線段AD分別與BE和CE相交于點M、N,給出下列結論:①∠AME=108°,②AN2=AMAD;③MN=3-;④S△EBC=2
-1,其中正確的結論是_________(把你認為正確結論的序號都填上).
【答案】①②③
【解析】解:∵∠BAE=∠AED=108°.∵AB=AE=DE,∴∠ABE=∠AEB=∠EAD=36°,∴∠AME=180°﹣∠EAM﹣∠AEM=108°,故①正確;
∵∠AEN=108°﹣36°=72°,∠ANE=36°+36°=72°,∴∠AEN=∠ANE,∴AE=AN,同理DE=DM,∴AE=DM.∵∠EAD=∠AEM=∠ADE=36°,∴△AEM∽△ADE
∴=
,∴AE2=AMAD;
∴AN2=AMAD;故②正確;
∵AE2=AMAD,∴22=(2﹣MN)(4﹣MN),解得:MN=3﹣;故③正確;
在正五邊形ABCDE中,∵BE=CE=AD=1+,∴BH=
BC=1,∴EH=
=
,∴S△EBC=
BCEH=
×2×
=
,故④錯誤;
故答案為:①②③.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,∠EAF=45°,連接對角線BD交AE于M,交AF于N,若DN=1,BM=2,那么MN=_____.證明:DN2+BM2=MN2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中:(1)正整數和負整數統稱為整數;(2)把能夠寫成分數形式 (m、n是整數,n≠0)的數叫做有理數;(3)異號兩數相加,當絕對值不等時,取絕對值較大加數的符號,并用較大的加數減去較小的加數;(4)0是整數,但不是整式.正確的個數有 ( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,BE∥AC,AE∥BD,OE與AB交于點F.
(1)試判斷四邊形AEBO的形狀,并說明理由;
(2)若OE=10,AC=16,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道平行四邊形有很多性質,現在如果我們把平行四邊形沿著它的一條對角線翻折,會發現這其中還有更多的結論.
(發現與證明)ABCD中,AB≠BC,將△ABC沿AC翻折至△AB`C,連結B`D.
結論1:△AB`C與ABCD重疊部分的圖形是等腰三角形;結論2:B`D∥AC;
(1)請證明結論1和結論2;
(應用與探究)
(2)在ABCD中,已知BC=2,∠B=45°,將△ABC沿AC翻折至△AB`C,連接B`D若以A、C、D、B`為頂點的四邊形是正方形,求AC的長(要求畫出圖形)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明是個愛動腦筋的同學,在發現教材中的用方框在日歷中移動的規律后,突發奇想,將連續的得數2,4,6,8,…,排成如圖形式:并用一個十字形框架框住其中的五個數,請你仔細觀察十字形框架中的數字的規律,并回答下列問題:
(1)請你選擇十字框中你喜歡的任意位置的一個數,將其設為x,并用含x的代數式表示十字框中五個數的和.
(2)若將十字框上下左右移動,可框住另外的五個數,試間:十字框能否框住和等于2015的五個數,如能,請求出這五個數;如不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校在開展“書香校園”活動期間,對學生課外閱讀的喜好進行抽樣調查(每人只選一種書籍),將調查結果繪制成如圖所示的兩幅不完整的統計圖,根據圖中的信息,解答下列問題:
(1)這次調查的學生人數為 人,扇形統計圖中m的值為 ;
(2)補全條形統計圖;
(3)如果這所學校要添置學生課外閱讀的書籍1500冊,請你估計“科普”類書籍應添置多少冊比較合適?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲口袋中裝有兩個相同的小球,它們的標號分別為2和7,乙口袋中裝有兩個相同的小球,它們的標號分別為4和5,丙口袋中裝有三個相同的小球,它們的標號分別為3,8,9.從這3個口袋中各隨機地取出1個小球.
(1)求取出的3個小球的標號全是奇數的概率是多少?
(2)以取出的三個小球的標號分別表示三條線段的長度,求這些線段能構成三角形的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com