精英家教網 > 初中數學 > 題目詳情

【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,BEACAEBD,OEAB交于點F.

1)試判斷四邊形AEBO的形狀,并說明理由;

2)若OE=10,AC=16,求菱形ABCD的面積.

【答案】1)四邊形AEBO為矩形,理由見解析(296

【解析】

1)根據有3個角是直角的四邊形是矩形即可證明;(2)根據矩形的性質得出AB=OE=10,再根據勾股定理求出BO,即可得出BD的長,再利用菱形的面積公式進行求解.

1)四邊形AEBO為矩形,

理由如下:

∵菱形ABCD的對角線AC、BD相交于點O

ACBD,∵BEAC,AEBD

BEBD,AEAC,∴四邊形AEBO為矩形;

2)∵四邊形AEBO為矩形

AB=OE=10,

AO=AC=8

OB=

BD=12,

S菱形ABCD=AC×BD=×16×12=96

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(幾何背景)如圖1AD為銳角△ABC的高,垂足為D.求證:AB2AC2BD2CD2

(知識遷移)如圖2,矩形ABCD內任意一點P,連接PA、PB、PC、PD,請寫出PAPB、PCPD之間的數量關系,并說明理由.

(拓展應用)如圖3,矩形ABCD內一點PPCPD,若PAa,PBbABc,且a、b、c滿足a2b2c2,則的值為   (請直接寫出結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班級準備購買一些獎品獎勵春季運動會表現突出的同學,獎品分為甲、乙兩種,已知,購買一個甲獎品比一個乙獎品多用20元,若用400元購買甲獎品的個數是用160元購買乙獎品個數的一半.

1)求購買一個甲獎品和一個乙獎品各需多少元?

2)經商談,商店決定給予該班級每購買甲獎品3個就贈送一個乙獎品的優惠,如果該班級需要乙獎品的個數是甲獎品的2倍還多8個,且該班級購買兩種獎項的總費用不超過640元,那么該班級最多可購買多少個甲獎品?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】是一個可以自由轉動的轉盤,被分成了面積相等的三個扇形,分別標有數, , ,甲轉動一次轉盤,轉盤停止后指針指向的扇形內的數記為(如果指針恰好指在分割線上,那么重轉一次,直到指針指向某一扇形為止).圖是背面完全一樣、牌面數字分別是, , 的四張撲克牌,把四張撲克牌背面朝上,洗勻后放在桌面上,乙隨機抽出一張牌的牌面數字記為.計算的值.

)用樹狀圖或列表法求的概率.

)甲乙兩人玩游戲,規定:當是正數時,甲勝;否則,乙勝,你認為這個游戲規則對甲乙雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,函數的圖象交于

1)求出m、n的值;

2)直接寫出不等式的解集;

3)求出的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知四邊形ABCD是正方形,對角線AC、BD相交于點E,以點E為頂點作正方形EFGH

1)如圖1,點A、D分別在EHEF上,連接BH、AF,BHAF有何數量關系,并說明理由;

2)將正方形EFGH繞點E順時針方向旋轉,如圖2,判斷BHAF的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校決定從甲、乙兩名同學中選拔一人參加“誦讀經典”大賽,在相同的測試條件下,甲、乙兩人5次測試成績(單位:分)如下:

甲:79,86,82,8583.

乙:88,81,8581,80.

請回答下列問題:

1)甲成績的中位數是______,乙成績的眾數是______;

2)經計算知,.請你求出甲的方差,并從平均數和方差的角度推薦參加比賽的合適人選.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(單位:米)與挖掘時間x(單位:天)之間的關系如圖所示,則下列說法中:甲隊每天挖100米;乙隊開挖兩天后,每天挖50米;x4時,甲、乙兩隊所挖管道長度相同;甲隊比乙隊提前2天完成任務.正確的是_____(直接填序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC與△ADE都是直角三角形,∠C=AED=,點EAB上,∠D=.如果△ABC經順時針旋轉后能與△ADE重合,那么旋轉中心是點______,旋轉了______

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视