【題目】如圖1,該拋物線是由y=x2平移后得到,它的頂點坐標為(﹣,﹣
),并與坐標軸分別交于A,B,C三點.
(1)求A,B的坐標.
(2)如圖2,連接BC,AC,在第三象限的拋物線上有一點P,使∠PCA=∠BCO,求點P的坐標.
(3)如圖3,直線y=ax+b(b<0)與該拋物線分別交于P,G兩點,連接BP,BG分別交y軸于點D,E.若ODOE=3,請探索a與b的數量關系.并說明理由.
【答案】(1);(2)
;(3)b=4a+3,理由見解析.
【解析】
(1)根據頂點坐標寫出頂點式,化頂點式為一般式,分別令x=0或y=0即可求出A、B的坐標;
(2)直線CP交x軸于點H,故點H作HG⊥AC交AC的延長線于點G,根據tan∠BCO=tan∠PCA解直角三角形即可求出H點坐標,由此可求得直線CH的表達式,聯立二次函數解析式即可求得點P坐標;
(3)直線BP的表達式為:y=(m+4)x-(m+4)、直線BG的表達式為:y=(n+4)x-(n+4),故OD=-(m+4),OE=(n+4),ODOE=-(m+4)(n+4)=3,即-[mn+4(m+n)+16]=3,而m+n=a-3,mn=-b-4,即可求解.
解:(1)拋物線的表達式為:y=(x+)2﹣
=x2+3x﹣4…①,
令x=0,則y=﹣4,故點C(0,﹣4);
令y=0,則x=-4或1,
故點A、B的坐標分別為:(﹣4,0)、(1,0);
(2)如圖,設直線CP交x軸于點H,故點H作HG⊥AC交AC的延長線于點G,
tan∠BCO==
=tan∠PCA,
∵OA=OC=4,故∠BAC=45°=∠GAH,
設GH=GA=x,則GC=4x,故AC=GC﹣GA=3x=4,
解得:x=,
則AH=x=
,故點H(﹣
,0),
設CH的表達式為:y=kx+b,
將C、H的坐標代入得,解得
,
∴CH的表達式為:y=﹣x﹣4…②,
聯立①②并解得:x=0(舍去)或,
故點P(﹣,﹣
);
(3)設點P、G的坐標分別為:(m,m2+3m﹣4)、(n,n2+3n﹣4),
由點P、B的坐標得,直線PB的表達式為:y=(m+4)x﹣(m+4);
同理直線BG的表達式為:y=(n+4)x﹣(n+4);
故OD=﹣(m+4),OE=(n+4),
直線y=ax+b(b<0)…③,
聯立①③并整理得:x2+(3﹣a)x﹣b﹣4=0,
故m+n=a﹣3,mn=﹣b﹣4,
ODOE=﹣(m+4)(n+4)=3,
即﹣[mn+4(m+n)+16]=3,而m+n=a﹣3,mn=﹣b﹣4,
整理得:b=4a+3.
科目:初中數學 來源: 題型:
【題目】如圖,點B、C、D都在⊙O上,過點C作AC∥BD交OB的延長線于點A,連接CD,且∠CDB=∠OBD=30°,BD=6cm.
(1)求證:AC是⊙O的切線.
(2)求⊙O的半徑長.
(3)求圖中陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】快慢兩車分別從相距千米的甲、乙兩地同時出發,勻速行駛,途中慢車因故障停留
小時,然后 以原速度的
倍繼續向甲地行駛,到達甲地后停止行駛;快車勻速到達乙地后,立即按原路原速返回甲 地(快車掉頭時間忽略不計),并且比慢車提前
分鐘到達甲地,快慢兩車之間的距離
(千米)與快 車行駛時間
(小時)之間的函數圖象如圖所示.則當兩車第二次相遇時,兩車距甲地還有________千米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是線段AB上的一點,AB=6cm,O是AB外一定點.連接OP,將OP繞點O順時針旋轉120°得OQ,連接PQ,AQ.
小明根據學習函數的經驗,對線段AP,PQ,AQ的長度之間的關系進行了探究.
下面是小明的探究過程,請補充完整:
(1)對于點P在AB上的不同位置,畫圖、測量,得到了線段AP,PQ,AQ的長度(單位:cm)的幾組值,如下表:
在AP,PQ,AQ的長度這三個量中,確定________的長度是自變量,________的長度和________的長度都是這個自變量的函數;
(2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數的圖象;
(3)結合函數圖象,解決問題:當AQ=PQ時,線段AP的長度約為________cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(m≠0,x>0)的圖象在第一象限內交于點A,B,且該一次函數的圖象與y軸正半軸交于點C,過A,B分別作y軸的垂線,垂足分別為D,E.已知A(1,4),
=
.
(1)求m的值和一次函數的解析式;
(2)若點M為反比例函數圖象在A,B之間的動點,作射線OM交直線AB于點N,當MN長度最大時,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的
5個主題進行了抽樣調查(每位同學只選取最關注的一個),根據調查結果繪制了兩幅不完
整的統計圖,根據圖中提供的信息,解答下列問題:
(1)這次調查的學生共有多少名?
(2)請將條形統計圖補充完整;
(3)在扇形統計圖中“進取”部分扇形的圓心角是 度;
(4)若該校學生人數為800人,請根據上述調查結果,估計該校學生中“感恩”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的頂點為D,與x軸交點A,B的橫坐標分別為﹣1,3,與y軸負半軸交于點C.下面五個結論:
①2a+b=0;
②4a+2b+c>0;
③對任意實數x,ax2+bx≥a+b;
④只有當a=時,△ABD是等腰直角三角形;
⑤使△ABC為等腰三角形的a值可以有3個.
其中正確的結論有_____.(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;
②連接MN,分別交AB、AC于點D、O;
③過C作CE∥AB交MN于點E,連接AE、CD.
則四邊形ADCE的周長為( 。
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,10×10的網格中,A,B,C均在格點上,誚用無刻度的直尺作直線MN,使得直線MN平分△ABC的周長(留作圖痕跡,不寫作法)
(1)請在圖1中作出符合要求的一條直線MN;
(2)如圖2,點M為BC上一點,BM=5.請在AB上作出點N的位置.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com