【題目】如圖,已知∠AOB=60°,∠AOB的邊OA上有一動點P,從距離O點18cm的點M處出發,沿線段MO、射線OB運動,速度為2cm/s;動點Q從點O出發,沿射線OB運動,速度為lcm/s;P、Q同時出發,同時射線OC繞著點O從OA上以每秒5°的速度順時針旋轉,設運動時間是t(s).
(1)當點P在MO上運動時,PO=______cm(用含t的代數式表示);
(2)當點P在線段MO上運動時,t為何值時,OP=OQ?此時射線OC是∠AOB的角平分線嗎?如果是請說明理由.
(3)在射線OB上是否存在P、Q相距2cm?若存在,請求出t的值并求出此時∠BOC的度數;若不存在,請說明理由.
【答案】(1)(18-2t);(2)詳見解析;(3)t=16,∠BOC=20°或t=20,∠BOC=40°.
【解析】
(1)先確定出PM=2t,即可得出結論;
(2)先根據OP=OQ建立方程求出t=6,進而求出∠AOC=30°,即可得出結論;
(3)分P、Q相遇前相距2cm和相遇后2cm兩種情況,建立方程求解,接口得出結論.
解:(1)當點P在MO上運動時,由運動知,PM=2t,
∵OM=18cm,
∴PO=OM-PM=(18-2t)cm,
故答案為:(18-2t);
(2)由(1)知,OP=18-2t,
當OP=OQ時,則有18-2t=t,
∴t=6
即t=6時,能使OP=OQ,
∵射線OC繞著點O從OA上以每秒5°的速度順時針旋轉,
∴∠AOC=5°×6=30°,
∵∠AOB=60°,
∴∠BOC=∠AOB-∠AOC=30°=∠AOC,
∴射線OC是∠AOB的角平分線,
(3)分為兩種情形.
當P、Q相遇前相距2cm時,
OQ-OP=2
∴t-(2t-18)=2
解這個方程,得t=16,
∴∠AOC=5°×16=80°
∴∠BOC=80°-60°=20°,
當P、Q相遇后相距2cm時,OP-OQ=2
∴(2t-18)-t=2
解這個方程,得t=20,
∴∠AOC=5°×20=100°
∴∠BOC=100°-60°=40°,
綜合上述t=16,∠BOC=20°或t=20,∠BOC=40°.
科目:初中數學 來源: 題型:
【題目】定義:對于給定的兩個函數,任取自變量x的一個值,當x<0時,它們對應的函數值互為相反數;當x≥0時,它們對應的函數值相等,我們稱這樣的兩個函數互為相關函數.例如:一次函數y=x﹣1,它的相關函數為y= .
(1)已知點A(﹣5,8)在一次函數y=ax﹣3的相關函數的圖象上,求a的值;
(2)已知二次函數y=﹣x2+4x﹣ .①當點B(m,
)在這個函數的相關函數的圖象上時,求m的值;
②當﹣3≤x≤3時,求函數y=﹣x2+4x﹣ 的相關函數的最大值和最小值;
(3)在平面直角坐標系中,點M,N的坐標分別為(﹣ ,1),(
,1),連結MN.直接寫出線段MN與二
次函數y=﹣x2+4x+n的相關函數的圖象有兩個公共點時n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO交⊙O于點E,延長AO交⊙O于點D,tanD= ,求
的值.
(3)在(2)的條件下,設⊙O的半徑為3,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】王老師購買了一套經濟適用房,他準備將地面鋪上地磚,地面結構如圖所示,根據圖中的數據(單位:m),解答下列問題:
①寫出用含x、y的整式表示的地面總面積;
②若x=4m,y=1.5m,鋪1m2地磚的平均費用為80元,求鋪地磚的總費用為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數.
小明的思路是:過P作PE∥AB,通過平行線性質來求∠APC.
(1)按小明的思路,易求得∠APC的度數為_____度;
(2)問題遷移:如圖2,AB∥CD,點P在射線OM上運動,記∠PAB=α,∠PCD=β,當點P在B、D兩點之間運動時,問∠APC與α、β之間有何數量關系?請說明理由;
(3)在(2)的條件下,如果點P在B、D兩點外側運動時(點P與點O、B、D三點不重合),請直接寫出∠APC與α、β之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A,B分別是x軸、y軸上的動點,點C,D是某個函數圖象上的點,當四邊形ABCD(A,B,C,D各點依次排列)為正方形時,我們稱這個正方形為此函數圖象的“伴侶正方形”.
例如:在圖1中,正方形ABCD是一次函數y=x+1圖象的其中一個“伴侶正方形”.
(1)如圖1,若某函數是一次函數y=x+1,求它的圖象的所有“伴侶正方形”的邊長;
(2)如圖2,若某函數是反比例函數 (k>0),它的圖象的“伴侶正方形”為ABCD,點D(2,m)(m<2)在反比例函數圖象上,求m的值及反比例函數的解析式;
(3)如圖3,若某函數是二次函數y=ax2+c(a≠0),它的圖象的“伴侶正方形”為ABCD,C,D中的一個點坐標為(3,4),請你直接寫出該二次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB是直徑,直線MN過點B,且∠MBC=∠BAC.半徑OD⊥BC,垂足為H,AD交BC于點G,DE⊥AB于點E,交BC于點F.
(1)求證:MN是⊙O的切線;
(2)求證:DE= BC;
(3)若tan∠CAG= ,DG=4,求點F到直線AD的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com