【題目】如圖,扇形OAB中,∠AOB=90°.P為弧AB上的一點,過點P作PC⊥OA,垂足為C,PC與AB交于點D.若PD=2,CD=1,則該扇形的半徑長為__________.
科目:初中數學 來源: 題型:
【題目】如圖,在△AOB中,∠AOB=90°,點A的坐標為(2,1),BO=2,反比例函數y=
的圖象經過點B,則k的值為( 。
A.﹣2B.﹣4C.4D.﹣8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中的點Q,我們記點Q到橫軸的距離為d1,到縱軸的距離為d2,規定:若d1≥d2,則稱d1為點Q的“系長距”;若d1<d2,則稱d2為點Q的“系長距”
例如:點Q(3,﹣4)到橫軸的距離d1=4,到縱軸的距離d2=3,因為4>3,所以點Q的系長距”為4
(1)①點A(﹣6,2)的“系長距”為 ;②若點B(a,2)的“系長距”為4,則a的值為 .
(2)已知A(3,0),B(0,4),點P為線段AB上的一點,且PB:PA=2:3,點P的“系長距”.
(3)若點C在雙曲線y=上,且點C的“系長距”為6,求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC相交于點F.
(1)如圖1,若DF⊥AC,垂足為F,AB=4,求BE的長;
(2)如圖2,將(1)中的∠EDF繞點D順時針旋轉一定的角度,DF仍與線段AC相交于點F.
求證:BE+CF=AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=x2﹣4的圖象與x軸交于點A、B(點A位于點B的左側),C為頂點.一次函數y=mx+2的圖象經過點A,與y軸交于點D.
(1)求直線AD的函數表達式;
(2)平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,且當1≤x≤3時,新拋物線對應的函數值有最小值為﹣1,求新拋物線對應的函數表達式;
(3)如圖,連接AC、BC,在坐標平面內,直接寫出使得△ACD與△EBC相似(其中點A與點E是對應點)的點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=-x2+2x+3.
(1)求函數圖像的頂點坐標,并畫出這個函數的圖像;
(2)根據圖像,直接寫出:
①當函數值y為正數時,自變量x的取值范圍;
②當-2<x<2時,函數值y的取值范圍;
③若經過點(0,k)且與x軸平行的直線l與y=-x2+2x+3的圖像有公共點,求k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(閱讀資料)
同學們,我們學過用配方法解一元二次方程,也可用配方法求代數式的最值.
(1)求4x2+16x+19的最小值.
解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3
因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此時,x=﹣2
(2)求﹣m2﹣m+2的最大值
解:﹣m2﹣m+2=﹣(m2+m)+2=﹣
因大于等于0,所以﹣
小于等于0,所以﹣
小于等于,即﹣m2﹣m+2的最大值是
,此時,m=﹣
.
(探索發現)
如圖①,是一張直角三角形紙片,∠B=90°,AB=8,BC=6,小明想從中剪出一個以∠B為內角且面積最大的矩形,經過多次操作發現,當沿著中位線DE、EF剪下時,所得的矩形的面積最大.下面給出了未寫完的證明,請你閱讀下面的證明并寫出余下的證明部分,并求出矩形的最大面積與原三角形面積的比值.
解:在AC上任取點E,作ED⊥BC,EF⊥AB,得到矩形BDEF.設EF=x
易證△AEF∽△ACB,則,
,
,
…
請你寫出剩余部分
(拓展應用)
如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點P、N分別在邊AB、AC上,頂點Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數式表示)
(靈活應用)
如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個面積最大的矩形(∠B為所剪出矩形的內角),該矩形的面積為 .(直接寫出答案)
(實際應用)
如圖④,現有一塊四邊形的木板余料ABCD,經測量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐師傅從這塊余料中裁出了頂點M、N在邊BC上且面積最大的矩形PQMN,該矩形的面積為 .(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,的三個頂點分別為
,
,
.
(1)畫出關于點O成中心對稱的
;
(2)以點A為位似中心,將放大為原來的2倍,得到
,請在第二象限內畫出
;
(3)直接寫出以點,
,
為頂點,以
為一邊的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com