【題目】已知關于x的方程x2﹣(k+1)x+ k2+1=0.
(1)當k取何值方程有兩個實數根.
(2)是否存在k值使方程的兩根為一個矩形的兩鄰邊長,且矩形的對角線長為 .
【答案】
(1)解:∵△=[﹣(k+1)]2﹣4×( k2+1)=2k﹣3≥0,
∴k≥
(2)解:設方程的兩根為x1、x2
∴x12+x22=5,
∵x1+x2=k+1,x1x2= k2+1,
∴x12+x22=(x1+x2)2﹣x1x2=(k+1)2﹣2×( k2+1)=5,解得k1=﹣6,k2=2,
∵x1+x2=k+1>0,
∴k>﹣1,
∴k=2
【解析】(1)根據判別式是非負數,這樣就可以確定k的取值范圍;(2)設方程的兩根為x1 , x2 , 依題意x12+x22=5,又根據根與系數的關系可以得到x1+x2=k+1,x1x2= k2+1,而x12+x22=(x1+x2)2﹣2x1x2 , 這樣利用這些等式變形即可求解.
【考點精析】認真審題,首先需要了解求根公式(根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數根2、當△=0時,一元二次方程有2個相同的實數根3、當△<0時,一元二次方程沒有實數根),還要掌握根與系數的關系(一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a、b、c而定;兩根之和等于方程的一次項系數除以二次項系數所得的商的相反數;兩根之積等于常數項除以二次項系數所得的商)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2﹣bx+1(﹣1≤b≤1),當b從﹣1逐漸變化到1的過程中,它所對應的拋物線位置也隨之變動.下列關于拋物線的移動方向的描述中,正確的是( )
A.先往左上方移動,再往左下方移動
B.先往左下方移動,再往左上方移動
C.先往右上方移動,再往右下方移動
D.先往右下方移動,再往右上方移動
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】九(1)班數學興趣小組經過市場調查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200﹣2x |
已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元.
(1)求出y與x的函數關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象經過點A(4,0),C(0,﹣4),另有一點B(﹣2,0).
(1)求一次函數解析式;
(2)聯結BC,點P是反比例函數y= 的第一象限圖象上一點,過點P作y軸的垂線PQ,垂足為Q.如果△QPO與△BCO相似,求P點坐標;
(3)聯結AC,求∠ACB的正弦值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B,C的坐標分別為(1,0),(0,1),(﹣1,0).一個電動玩具從坐標原點0出發,第一次跳躍到點P1 . 使得點P1與點O關于點A成中心對稱;第二次跳躍到點P2 , 使得點P2與點P1關于點B成中心對稱;第三次跳躍到點P3 , 使得點P3與點P2關于點C成中心對稱;第四次跳躍到點P4 , 使得點P4與點P3關于點A成中心對稱;第五次跳躍到點P5 , 使得點P5與點P4關于點B成中心對稱;…照此規律重復下去,則點P7的坐標是 , 點P2016的坐標為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市實施“農業立市,工業強市,旅游興市”計劃后,2009年全市荔枝種植面積為24萬畝.調查分析結果顯示.從2009年開始,該市荔枝種植面積y(萬畝)隨著時間x(年)逐年成直線上升,y與x之間的函數關系如圖所示.
(1)求y與x之間的函數關系式(不必注明自變量x的取值范圍);
(2)該市2012年荔枝種植面積為多少萬畝?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com