【題目】如圖,線段AB為⊙O的直徑,點C在AB的延長線上,AB=4,BC=2,點P是⊙O上一動點,連接CP,以CP為斜邊在PC的上方作Rt△PCD,且使∠DCP=60°,連接OD,則OD長的最大值為 ( )
A.B.
C.
D.4
【答案】C
【解析】
如圖,作△COE,使得∠CEO=90°,∠ECO=60°,則CO=2CE,OE=2,∠OCP=∠ECD,由△COP∽△CED,推出
=
=2,即ED=
OP=1(定長),由點E是定點,DE是定長,推出點D在半徑為1的⊙E上,由此即可解決問題.
解:如圖,作△COE,使得∠CEO=90°,∠ECO=60°,則CO=2CE,OE=2,
∠OCP=∠ECD,
∵∠CDP=90°,∠DCP=60°,
∴CP=2CD,
∴=
=2,
∴△COP∽△CED,
∴=
=2,
即ED=OP=1(定長),
∵點E是定點,DE是定長,
∴點D在半徑為1的⊙E上,
∵OD≤OE+DE=2+1,
∴OD的最大值為2+1,
故選C.
科目:初中數學 來源: 題型:
【題目】原來公園有一個半徑為 1 m 的苗圃,現在準備擴大面積,設當擴大后的半徑為x m時,則增加的環形的面積為y m 2 .
(1)寫出y與x的函數關系式;
(2)當半徑增大到多少時面積增大1倍;
(3)試猜測半徑是多少時,面積是原來的3、4、5、…倍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線與
軸交于點
,
兩點(
在
的左側),直線
與
軸交于點
,與
軸交于點
.點
是
軸上方的拋物線上一動點,過點
作
軸于點
,交直線
于點
..
(1)求拋物線與x軸的交點坐標;
(2)設點的橫坐標為
,若
,求
的值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)如圖所示,下列結論中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個拋物線形狀與二次函數y=x2的圖象形狀和頂點相同,但開口方向不同.
(1)求拋物線解析式.
(2)如果該拋物線與一次函數y=kx﹣2相交于A、B兩點,已知A點的縱坐標為﹣1,求△OAB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ABC=90°,AB=BC=4,點D、E分別是邊AB、AC的中點,連接DE,將△ADE繞點A按順時針方向旋轉,記旋轉角為α,BD、CE所在直線相交所成的銳角為β.
(1)問題發現當α=0°時,=_____;β=_____°.
(2)拓展探究
試判斷:當0°≤α<360°時,和β的大小有無變化?請僅就圖2的情形給出證明.
(3)在△ADE旋轉過程中,當DE∥AC時,直接寫出此時△CBE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,M是ΔABC的邊BC的中點,AN平分BAC, BN
AN于點N延長BN交AC于點D,已知AB=10,BC=15,MN=3
(1)求證:ΔBAN≌ΔDAN
(2)求ΔABC的周長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,矩形ABCD中,AE平分交BC于E,
,則下面的結論:①
是等邊三角形;②
;③
;④
,其中正確結論有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三江超市為了吸引顧客,設計了一種促銷活動,在一個不透明的箱子里放有4個相同小球,在球上分別標有“0元”、“10元”、“20元”、“30元”的字樣,規定:顧客每消費滿298元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).超市根據兩小球所標金額的和,返還相應價格的購物券.某顧客正好消費298元.
(1)該顧客至少可得到 元購物券,至多可得到 元購物券.
(2)請用畫樹狀圖或列表的方法,求出該顧客所獲得購物券不低于30元的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com