精英家教網 > 初中數學 > 題目詳情

【題目】一個拋物線形狀與二次函數yx2的圖象形狀和頂點相同,但開口方向不同.

1)求拋物線解析式.

2)如果該拋物線與一次函數ykx2相交于A、B兩點,已知A點的縱坐標為﹣1,求△OAB的面積.

【答案】(1)y=﹣x2;(23

【解析】

1)由圖象形狀和頂點相同,但開口方向不同可知二次項系數a互為相反數即可得出函數解析式.
2)利用拋物線解析式和點A的縱坐標求出A的坐標,把A的坐標代入y=kx-2,根據待定系數法求得解析式,然后解析式聯立求得B的坐標,利用SOAB=SAOG+SBOG求解即可.

解:(1)形狀與二次函數yx2的圖象形狀和頂點相同,但開口方向不同,

此拋物線解析式為y=﹣x2

2)∵A點的縱坐標為﹣1

y=﹣1代入y=﹣x2,解得x±1,

A1,﹣1)或(﹣1,﹣1

A1,﹣1)代入ykx2得,﹣1k2,

解得k1,

A(﹣1,﹣1)代入ykx2得﹣1=﹣k2,

解得k=﹣1

∴一次函數表達式為yx2y-x2,

∴令x0,得y=﹣2,

G0,﹣2),

I.當一次函數表達式為y=﹣x2時,

由一次函數與二次函數聯立可得,

解得,

B2,﹣4),

SOABSAOG+SBOG3,

II.同理證得當一次函數表達式為yx2時,SOAB3

OAB的面積為3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:

(1)畫出ABC關于y軸對稱的A1B1C1,并寫出A1的坐標.

(2)畫出ABC繞點B逆時針旋轉90°后得到的A2B2C2,并寫出A2的坐標.

(3)畫出A2B2C2關于原點O成中心對稱的A3B3C3,并寫出A3的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖7,已知平行四邊形ABCD的周長是32cm,AB︰BC=5︰3,AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.

(1)求∠C的度數;

(2)已知DF的長是關于的方程--6=0的一個根,求該方程的另一個根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,P是對角線AC上的一點,點EBC的延長線上,且PE=PBPEDC交于點O

(基礎探究)

1)求證:PD=PE

2)求證:∠DPE=90°

3)(應用拓展)把正方形ABCD改為菱形,其他條件不變(如圖),若PE=3,則PD=________

∠ABC=62°,則∠DPE=________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=ax2+bx+ca≠0)的圖象的頂點C的坐標為(﹣1,﹣3),與x軸交于A﹣3,0)、B1,0),根據圖象回答下列問題:

1)寫出方程ax2+bx+c=0的根;

2)寫出不等式ax2+bx+c0的解集;

3)若方程ax2+bx+c=k有實數根,寫出實數k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,線段AB為⊙O的直徑,點CAB的延長線上,AB4BC2,點P是⊙O上一動點,連接CP,以CP為斜邊在PC的上方作RtPCD,且使∠DCP60°,連接OD,則OD長的最大值為 (

A.B.C.D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=3cmBC=4cm,點EC點出發向終點B運動,速度為1cm/秒,運動時間為t秒,作EFAB,點P是點C關于FE的對稱點,連接AP,當△AFP恰好是直角三角形時,t的值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AB=BC=12cm,點D從點A開始沿邊AB2cm/s的速度向點B移動,移動過程中始終保持DEBC,DFAC,

求:出發幾秒時,四邊形DFCE的面積為20cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ly=﹣2x+mx軸交于點A(﹣2,0),拋物線C1yx2+4x+3x軸的一個交點為B(點B在點A的左側),過點BBD垂直x軸交直線l于點 D

1)求m的值和點B的坐標;

2)將△ABD繞點A順時針旋轉90°,點B,D的對應點分別為點E,F

F的坐標為   ;

將拋物線C1向右平移使它經過點F,此時得到的拋物線記為C2,直接寫出拋物線C2的表達式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视