分析 (1)根據旋轉性質以及三角形內角和定理即可解決.
(2)根據EM∥FE′可以得$\frac{EM}{FE′}$=$\frac{EN}{NE′}$=$\frac{1}{2}$,再根據AN=NE,BE′=DE即可得到線段DE、BF、ME之間的關系.
(3)通過輔助線求出線段E′F=7,E′Q=9,再由(2)的結論得到ME的長.
解答 解:(1)∵△ABE′是由△ADE繞點A順時針旋轉120°得到,
∴∠EAE′=120°,AE=AE′,
∴∠E′=∠AEE′=$\frac{1}{2}(180°-∠EAE′)$=30°,
故答案為30°.
(2)①當點E在CD上時,DE+BF=2ME,理由如下:
如圖1,當點E在線段CD上,AF交EE′于N,
∵∠EAF=30°,∠EAE′=120,
∴∠E′AN=90°,
∴E′N=2AN,
∵∠NAE=∠NEA=30°,
∴NA=NE,E′N=2EN,
∵EM∥FE′,
∴$\frac{EM}{FE′}$=$\frac{EN}{NE′}$=$\frac{1}{2}$,
∵BE′=DE,
∴E′F=2ME,
∴DE+BF=2ME.
②當點E在CD延長線上,0°<∠EAD∠30°時,BF-DE=2ME,理由如下:
如圖2,∵∠EAF=30°,∠EAE′=120,
∴∠E′AN=90°,
∴E′N=2AN,
∵∠NAE=∠NEA=30°,
∴NA=NE,E′N=2EN,
∵EM∥FE′,
∴$\frac{EM}{FE′}$=$\frac{EN}{NE′}$=$\frac{1}{2}$,
∵BE′=DE,
∴E′F=2ME,
∴BF-DE=2ME.
③當30°<∠EAD∠90°時,DE+BF=2ME,理由如下:
如圖3,∵∠EAM=30°,∠EAE′=120,
∴∠E′AN=90°,
∴E′N=2AN,
∵∠NAE=∠NEA=30°,
∴NA=NE,E′N=2EN,
∵EM∥FE′,
∴$\frac{EM}{FE′}$=$\frac{EN}{NE′}$=$\frac{1}{2}$,
∵BE′=DE,
∴E′F=2ME,
∴BF+DE=2ME.
④當90°<∠EAD<120°時,DE-BF=2ME,理由如下:
如圖4,∵∠EAM=30°,∠EAE′=120,
∴∠E′AN=90°,
∴E′N=2AN,
∵∠NAE=∠NEA=30°,
∴NA=NE,E′N=2EN,
∵EM∥FE′,
∴$\frac{EM}{FE′}$=$\frac{EN}{NE′}$=$\frac{1}{2}$,
∵BE′=DE,
∴E′F=2ME,
∴DE-BF=2ME.
(3)如圖5,作AG⊥BC于點G,DH⊥BC于H,AP⊥EE′于P,EQ⊥BC于Q,
∵AD∥BC,AD=AB=CD,∠BAD=120°,易知四邊形AGHD是矩形,
在△AGB和△DHC中,
$\left\{\begin{array}{l}{∠ABC=∠DCH}\\{∠AGB=∠DHC}\\{AG=DH}\end{array}\right.$,
∴△AGB≌△DHC,
∴BG=HC,AD=GH,
∵∠ABE′=∠ADC=120°,
∴點E′、B、C共線,設AD=AB=CD=x,則GH=x,BG=CH=$\frac{1}{2}$x,
在RT△EQC中,CE=2,∠ECQ=60°,
∴CQ=$\frac{1}{2}$EC=1,EQ=$\sqrt{3}$,
∴E′Q=BC+BE′-CQ=3x-3,
在RT△APE中,AE=2$\sqrt{7}$,∠AEP=30°,
∴AP=$\sqrt{7}$,PE=$\sqrt{21}$,
∵AE=AE′,AP⊥EE′,
∴PE=PE′=$\sqrt{21}$,
∴EE′=2$\sqrt{21}$,
在RT△E′EQ中,E′Q=$\sqrt{EE{′}^{2}-E{Q}^{2}}$=9,
∴3x-3=9,
∴x=4,
∴DE=BE′=2,BC=8,BG=2,
∴E′G=4,
∵∠AE′G=′AE′F,∠AGE′=∠FAE′,
∴△AGE′∽△FAE′,
∴$\frac{AE′}{E′G}=\frac{E′F}{AE′}$,
∴$\frac{2\sqrt{7}}{4}=\frac{E′F}{2\sqrt{7}}$,
∴E′F=7,
∴BF=E′F-E′B=7-2=5,
∵DE+BF=2ME
∴ME=$\frac{7}{2}$.
點評 本題考查等腰梯形的性質、直角三角形中30度角的性質、勾股定理、平行成比例、旋轉的性質等知識,學會分類討論,正確畫出圖形是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com