【題目】解答題
(1)求不等式組 的解集;
(2)如圖,在△ABC中,己知∠ABC=30°,將△ABC繞點B逆時針旋轉50°后得到△A′BC′,已知A′C′∥BC,求∠A的度數.
【答案】
(1)解: ,
∵解不等式①得:x≥﹣6,
解不等式②得:x>﹣2,
∴不等式組的解集為x>﹣2
(2)解:∵將△ABC繞點B逆時針旋轉50°后得到△A′BC′,
∠A′BA=50°,
∵∠ABC=30°,
∴∠A′BC=80°,
∵A′C′∥BC,
∴∠A′+∠A′BC=180°,
∴∠A′=100°,
∴根據旋轉得出∠A=∠A′=100°
【解析】(1)求出每個不等式的解集,再根據找不等式組解集的規律找出不等式組的解集即可;(2)求出∠A′BC,根據平行線的性質求出∠A′,根據旋轉的性質得出即可.
【考點精析】本題主要考查了一元一次不等式組的解法和平行線的性質的相關知識點,需要掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 );兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD的外側,作兩個等邊三角形ADE和DCF,連接AF,BE.
(1)請判斷:AF與BE的數量關系是______________.位置關系是_______________.
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變為“兩個等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請做出判斷并給與證明.
(圖1) (圖2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個兩位數,十位上數字是x,個位上數字是y,若把十位上數字和個位上數字對調,所得的兩位數是 ( )
A. yx B. y+x C. 10y+x D. 10x+y
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)在圖①中以P為頂點畫∠P,使∠P的兩邊分別和∠1的兩邊垂直;
(2)量一量∠P和∠1的度數,它們之間的數量關系是 ;
(3)同樣在圖②和圖③中以P為頂點作∠APB,使∠APB的兩邊分別和∠1的兩邊垂直,分別寫出圖②和圖③中∠APB和∠1之間的數量關系(不要求寫出理由).
圖②: ,
圖③: ;
(4)由上述三種情形可以得到一個結論:如果一個角的兩邊分別和另一個角的兩邊垂直,那么這兩個角 (不要求寫出理由).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com