【題目】如圖,在△ABC中,∠ACB=
,以點A為圓心,AC為半徑,作⊙A,交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF,交⊙A于點F,連接AF,BF,DF.
(1)求證:BF是⊙A的切線;
(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給與證明.
(3)若EF=1,AE=2,求cos∠CBA的值.
【答案】(1)見解析;(2)∠CAB=,四邊形ADFE為菱形,理由見解析.(3)
【解析】
(1)根據平行線的性質得∠E=∠CAB,∠EFA=∠FAB,加上∠E=∠EFA,則∠FAB=∠CAB,于是可判斷△ABC≌△ABF,從而得到∠AFB=90°,然后根據切線的判定方法可判斷BF是⊙A的切線;
(2)當∠CAB=60°,則∠FAB=∠EAF=60°,于是可證△AEF和△ADF都為等邊三角形,所以AE=EF=AD=DF,然后根據菱形的判定方法可判斷此時四邊形ADFE是菱形;
(3)連接FC,證明∠ACF=∠CBA即可.
(1)證明:∵EF∥AB,
∴∠E=∠CAB,∠EFA=∠FAB,
∵∠E=∠EFA,
∴∠FAB=∠CAB,
在△ABC和△ABF中,
,
∴△ABC≌△ABF(SAS),
∴∠AFB=∠ACB=90°,
∴BF⊥AF,
∵AF是⊙A的半徑,
∴BF是⊙A的切線;
(2)解:當∠CAB=60°時,四邊形ADFE為菱形.
理由如下:∵∠CAB=60°,
∴∠FAB=∠EAF=60°,
∵AE=AF=AD,
∴△AEF和△ADF都為等邊三角形,
∴AE=EF=AD=DF,
∴四邊形ADFE是菱形.
(3)連FC,
∵EC為直徑,
∴∠EFC=90°
∵EF=1,AE=2,
∴FC=,
∵A為EC的中點,EF∥AB,
∴AB垂直平分線FC,交AB于P,則CP=
又∠ABC=∠ACP
cos∠ABC=∠ACP=
=
科目:初中數學 來源: 題型:
【題目】把3顆算珠放在計數器的3根插棒上構成一個數字,例如,如圖擺放的算珠表示數300.現將3顆算珠任意擺放在這3根插棒上.
(1)若構成的數是兩位數,則十位數字為1的概率為 ;
(2)求構成的數是三位數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 要了解我市居民的低碳生活狀況,適宜采用抽樣調查的方法
B. 一組數據2,2,3,6的眾數和中位數都是2
C. “擲一枚硬幣正面朝上的概率是”,表示每拋硬幣2次就有1次正面朝上
D. 隨機抽取甲乙兩名同學的5次數學成績,平均分都是90分,方差分別是S甲2=5,S乙2=10,說明乙的成績較為穩定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數的圖象與反比例函數
的圖象交于點
和
.
求一次函數和反比例函數的表達式;
請直接寫出
時,x的取值范圍;
過點B作
軸,
于點D,點C是直線BE上一點,若
,求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為監控某條生產線上產品的質量,檢測員每個相同時間抽取一件產品,并測量其尺寸,在一天的抽檢結束后,檢測員將測得的個數據按從小到大的順序整理成如下表格:
編號 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ | |||||
尺寸(cm) | 8.72 | 8.88 | 8.92 | 8.93 | 8.94 | 8.96 | 8.97 | 8.98 | a | 9.03 | 9.04 | 9.06 | 9.07 | 9.08 | b |
按照生產標準,產品等次規定如下:
尺寸(單位:cm) | 產品等次 |
8.97≤x≤9.03 | 特等品 |
8.95≤x≤9.05 | 優等品 |
8.90≤x≤9.10 | 合格品 |
x<8.90或x>9.10 | 非合格品 |
注:在統計優等品個數時,將特等品計算在內;在統計合格品個數時,將優等品(含特等品)僅算在內.
(1)已知此次抽檢的合格率為80%,請判斷編號為的產品是否為合格品,并說明理由
(2)已知此次抽檢出的優等品尺寸的中位數為9cm.
(i)求a的值,
(ii)將這些優等品分成兩組,一組尺寸大于9cm,另一組尺寸不大于9cm,從這兩組中各隨機抽取1件進行復檢,求抽到的2件產品都是特等品的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新園小區計劃在一塊長為20米,寬12米的矩形場地上修建三條互相垂直的長方形甬路(一條橫向、兩條縱向,且橫向、縱向的寬度比為3:2),其余部分種花草.若要使種花草的面積達到144米2.則橫向的甬路寬為_____米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠準備生產甲、乙兩種商品銷往“一帶一路”沿線國家和地區.已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.求甲種商品與乙種商品的銷售單價各是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,將邊AB繞點A順時針旋轉60°得到線段AD,將邊AC繞點A逆時針旋轉120°得到線段AE,連接DE.
(1)、如圖①,當∠BAC=90°時,若△ABC的面積為5,則△ADE的面積為________;
(2)如圖②,CF、BG分別是△ABC和△ADE的高,若△ABC為任意三角形,△ABC與△ADE的面積是否相等,請說明理由;
(3)如圖③,連接BD、CE.若AB=4,AC=2,四邊形CEDB的面積為13
,則△ABC的面積為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D是以AB為直徑的半圓O上一點,連接BD,點C是的中點,過點C作直線BD的垂線,垂足為點E.
求證:(1)CE是半圓O的切線;
(2)BC2=ABBE.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com