【題目】閱讀材料:如果一個數的平方等于,記為記
,這個數
叫做虛數單位,那么形如
(
為實數)的數就叫做復數,
叫這個復數的實部,
叫做這個復數的虛部。它有如下特點:①它的加,減,乘法運算與整式的加,減,乘法運算類似。例如計算:
;
②若他們的實部和虛部分別相等,則稱這兩個復數相等;若它們的實部相等,虛部互為相反數,則稱這兩個復數共軛,如
的共軛復數為
。
(1)填空: ;
。
(2)求的共軛復數:
(3)已知,其中
為正整數,求
的值;
科目:初中數學 來源: 題型:
【題目】 如圖,已知△ABC≌△DBE,點D在AC上,BC與DE交于點P,若AD=DC=2.4,BC=4.1.
(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度數;
(2)求△DCP與△BPE的周長和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經過點E,且交BC于點F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點,點P在該拋物線上(P點與A、B兩點不重合).如果△ABP的三邊滿足AP2+BP2=AB2,則稱點P為拋物線y=ax2+bx+c(a≠0)的勾股點.
(1)直接寫出拋物線y=-x2+1的勾股點的坐標.
(2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點,點P(1, )是拋物線的勾股點,求拋物線的函數表達式.
(3)在(2)的條件下,點Q在拋物線上,求滿足條件S△ABQ=S△ABP的Q點(異于點P)的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近年來市政府每年出資新建一批廉租房,使城鎮住房困難的居民住房狀況得到改善.下面是某小區2006~2008年每年人口總數和人均住房面積的統計的折線圖(人均住房面積=該小區住房總面積/該小區人口總數,單位:㎡/人).
根據以上信息,則下列說法:①該小區2006~2008年這三年中,2008年住房總面積最大;②該小區2007年住房總面積達到1.728×106 m;③該小區2008年人均住房面積的增長率為4%.其中正確的有
(A)①②③(B)①②(C)① (D)③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,要把小河里的水引到田地A處,就作AB⊥l(垂足為B),沿AB挖水溝,水溝最短.理由是___________.
(2)把命題“平行于同一直線的兩直線平行”寫成“如果……,那么……”的形式._____________________________ .
(3)比較大。______
.
(4)已知與
是同類項,則m-3n的平方根是___.
(5)已知點P的坐標為(3a+6,2﹣a),且點P到兩坐標軸的距離相等,則點P的坐標是______.
(6) 如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規律,經過第2018次運動后,動點P的坐標是______________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD交于點O,AB=AC,點E是BD上一點,且AE=AD,∠EAD=∠BAC.
⑴ 求證:∠ABD=∠ACD;
⑵ 若∠ACB=65°,求∠BDC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知 AD 為△ABC 的高線,AD=BC,以 AB 為底邊作等腰 Rt△ABE,連接 ED, EC,延長CE 交AD 于F 點,下列結論:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正確的有( )
A. ①③B. ①②④C. ①②③④D. ②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com