【題目】某八年級數學興趣小組對“三角形內角或外角平分線的夾角與第三個內角的數量關系”進行了探究.
(1)如圖1,△ABC的兩內角∠ABC與∠ACB的平分線交于點E,求證:∠BEC=90°+∠A;
(2)如圖2,△ABC的內角∠ABC的平分線與△ABC的外角∠ACM的平分線交于點E,請寫出∠E與∠A的數量關系,并證明.
(3)如圖3,△ABC的兩外角∠DBC與∠BCF的平分線交于點E,請你直接寫出∠E與∠A的數量關系,不需證明.
【答案】(1)證明見解析;(2)∠A=2∠E,證明見解析;(3)∠E=90°-∠A.
【解析】
(1)先根據角平分線的性質得出∠EBC=∠ABC,∠ECB=
∠ACB,再由三角形內角和定理得出∠BEC+∠EBC+∠ECB=180°,利用等量代換即可得出結論;
(2)先根據角平分線的性質得出∠EBC=∠ABC,∠ECM=
∠ACM,再由三角形外角的性質即可得出結論;
(3)根據三角形的一個外角等于與它不相鄰的兩個內角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據三角形的內角和定理列式整理即可得解.
(1)∵BE、CE分別平分∠ABC和∠ACB,
∴∠EBC=∠ABC,∠ECB=
∠ACB,
∴∠BEC+∠EBC+∠ECB=180°,
∴∠BEC=180°-(∠EBC+∠ECB)
=180°-( ∠ABC+
∠ACB)=180°-
(∠ABC+∠ACB)
=180°-(180°-∠A)
=180°-90°+∠A
=90°+∠A.
(2)∵BE是∠ABC的平分線,CE是∠ACM的平分線,
∴∠EBC=∠ABC,∠ECM=
∠ACM.
∵∠ACM是△ABC的外角,∠ECM是△BCE的外角,
∴∠ACM=∠A+∠ABC,∠ECM=∠BEC+∠EBC,
∴∠ECM=∠ACM=
(∠A+∠ABC)=∠BEC+∠EBC,即
∠A+∠EBC=∠BEC+∠EBC,
∴∠A=2∠B∠A=2∠C,即∠A=2∠E;
(3)結論∠E=90°-∠A.
∵∠CBD與∠BCF是△ABC的外角,
∴∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,
∵BE,CE分別是∠ABC與∠ACB的平分線,
∴∠EBC=(∠A+∠ACB),∠ECB=
(∠A+∠ABC).
∵∠EBC+∠ECB+∠E=180°,
∴∠E=180°-∠EBC-∠ECB,
=180°-(∠A+∠ACB)-
(∠A+∠ABC),
=180°-∠A-
(∠A+∠ABC+∠ACB),
=180°-∠A-90°
=90°-∠A.
科目:初中數學 來源: 題型:
【題目】請借鑒以前研究函數的經驗,探索函數y=+2的圖象和性質.
(1)自變量x的取值范圍為 ;
(2)填寫下表,畫出函數的圖象;
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | 6 | 7 | … |
y | … | 1 | 0.8 | 0.5 | ﹣1 | ﹣4 | 8 |
(3)觀察圖象,寫出該函數兩條不同類型的性質;
(4)若x>3,則y的取值范圍為 ;若y<﹣1,則x的取值范圍為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點。試探索BM和BN的關系,并證明你的結論。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖中實線所示,函數y=|a(x﹣1)2﹣1|的圖象經過原點,小明同學研究得出下面結論:
①a=1;②若函數y隨x的增大而減小,則x的取值范圍一定是x<0;
③若方程|a(x﹣1)2﹣1|=k有兩個實數解,則k的取值范圍是k>1;
④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函數圖象的四個不同點,且m1<m2<m3<m4,則有m2+m3﹣m1=m4.其中正確的結論有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O為平面直角坐標系的原點,點A在x軸上,△AOC是邊長為2的等邊三角形.
(1)寫出△AOC的頂點C的坐標:_____.
(2)將△AOC沿x軸向右平移得到△OBD,則平移的距離是_____
(3)將△AOC繞原點O順時針旋轉得到△OBD,則旋轉角可以是_____度
(4)連接AD,交OC于點E,求∠AEO的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n-1有兩個不相等的實數根.其中結論正確的個數為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分別找一點M、N,當△AMN的周長最小時,∠AMN+∠ANM的度數是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學活動小組組織一次登山活動,他們從山腳下點出發沿斜坡
到達
點,再從
點沿斜坡
到達山頂
點,路線如圖所示.斜坡
的長為
米,斜坡
的長為
米,坡度是
,已知
點海拔
米,
點海拔
米.
問
點測得
點的俯角為________
,并求
點的海拔;
求斜坡
的坡度;
為了方便上下山,若在
到
之間架設一條鋼纜,求鋼纜
的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com