精英家教網 > 初中數學 > 題目詳情

【題目】在正方形 ABCD 中,M BC 邊上一點,且點 M 不與 B、C 重合,點 P 在射線 AM 上,將線段 AP 繞點 A 順時針旋轉 90°得到線段 AQ,連接BP,DQ.

(1)依題意補全圖 1;

(2)①連接 DP,若點 P,Q,D 恰好在同一條直線上,求證:DP2+DQ2=2AB2

若點 P,Q,C 恰好在同一條直線上,則 BP AB 的數量關系為:

【答案】(1)詳見解析;(2)①詳見解析;②BP=AB.

【解析】

(1)根據要求畫出圖形即可;

(2)①連接BD,如圖2,只要證明ADQ≌△ABP,DPB=90°即可解決問題;

②結論:BP=AB,如圖3中,連接AC,延長CDN,使得DN=CD,連接AN,QN.由ADQ≌△ABP,ANQ≌△ACP,推出DQ=PB,AQN=APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;

(1)解:補全圖形如圖 1:

(2)①證明:連接 BD,如圖 2,

∵線段 AP 繞點 A 順時針旋轉 90°得到線段 AQ,

AQ=AP,QAP=90°,

∵四邊形 ABCD 是正方形,

AD=AB,DAB=90°,

∴∠1=2.

∴△ADQ≌△ABP,

DQ=BP,Q=3,

∵在 RtQAP 中,∠Q+QPA=90°,

∴∠BPD=3+QPA=90°,

∵在 RtBPD 中,DP2+BP2=BD2, 又∵DQ=BP,BD2=2AB2,

DP2+DQ2=2AB2

②解:結論:BP=AB.

理由:如圖 3 中,連接 AC,延長 CD N,使得 DN=CD,連接 AN,QN.

∵△ADQ≌△ABP,ANQ≌△ACP,

DQ=PB,AQN=APC=45°,

∵∠AQP=45°,

∴∠NQC=90°,

CD=DN,

DQ=CD=DN=AB,

PB=AB.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A1,1),B4,2),C3,4

1)若△A1B1C1與△ABC關于y軸成軸對稱,寫出△A1B1C1三個頂點坐標:A1   B1   ;C1   

2)畫出△A1B1C1,并求△A1B1C1面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在半徑為2的⊙O中,弦AB=2,O上存在點C,若AC=2,則∠BAC的度數為___.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】平面直角坐標系中,A(0,3),B(4,0),C(﹣1,﹣1), P 線段 AB上一動點,將線段 AB 繞原點 O 旋轉一周, P 的對應點為 P′, P′C 的最大值為_____,最小值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平分,是邊上一點,以點為圓心,大于點的距離為半徑作弧,交于點,再分別以點為圓心,大于的長為半徑作弧,兩弧交于點,作直線分別交于點、,若,,則__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】近年來網約車十分流行,初三某班學生對美團滴滴兩家網約車公司各10名司機月收入進行了一項抽樣調查,司機月收入(單位:千元)如圖所示:

根據以上信息,整理分析數據如下:

平均月收入/千元

中位數/千元

眾數/千元

方差/千元2

美團

6

6

1.2

滴滴

6

4

(1)完成表格填空;

(2)若從兩家公司中選擇一家做網約車司機,你會選哪家公司,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知中,延長邊上的中線,使,延長邊上的中線,使,連接

1)補全圖形;

2的大小關系如何?證明你的結論;

3三點的位置關系如何?證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知m,nm<n)是關于x的方程(xa)(xb)=2的兩根,若a<b,則下列判斷正確的是

A. a<m<b<n B. m<a<n<b

C. a<m<n<d D. m<a<b<n

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠A=108°.

1)實踐與操作:作AB的垂直平分線DE,與AB,BC分別交于點D,E(用尺規作圖.保留作圖痕跡,不要求寫作法)

2)推理與計算:求∠AEC的度數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视