【題目】如圖,在平面直角坐標系中,把以格點為頂點的三角形稱為格點三角形(每個小方格都是邊長為1的正方形).圖中△ABC是格點三角形,點A,B,C的坐標分別是(﹣4,﹣1),(﹣2,﹣3),(﹣1,﹣2).
(1)以O為旋轉中心,把△ABC繞O點順時針旋轉90°后得到△A1B1C1,畫出△A1B1C1;
(2)以O為位似中心,在第一象限內把△ABC放大2倍后得到△A2B2C2,畫出△A2B2C2;
(3)△ABC內有一點P(a,b),寫出經過(2)位似變換后P的對應點P1的坐標.
科目:初中數學 來源: 題型:
【題目】如圖1,在銳角△ABC中,AB=5,tanC=3,BD⊥AC于點D,BD=3,點P從點A出發,以每秒1個單位長度的速度沿AB向終點B運動,過點P作PE∥AC交邊BC于點E,以PE為邊作Rt△PEF,使∠EPF=90°,點F在點P的下方,且EF∥AB.設△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S>0),點P的運動時間為t(秒)(t>0).
(1)直接寫出線段AC的長為 .
(2)當△PEF與△ABD重疊部分圖形為四邊形時,求S與t之間的函數關系式,并寫出t的取值范圍.
(3)若邊EF所在直線與邊AC交于點Q,連結PQ,如圖2,
①當PQ將△PEF的面積分成1:2兩部分時,求AP的長.
②直接寫出△ABC的某一頂點到P、Q兩點距離相等時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點,分別連接AC、CD、AD.
(1)求拋物線的函數表達式以及頂點D的坐標;
(2)在拋物線上取一點P(不與點C重合),并分別連接PA、PD,當△PAD的面積與△ACD的面積相等時,求點P的坐標;
(3)將(1)中所求得的拋物線沿A、D所在的直線平移,平移后點A的對應點為A′,點C的對應點為C′,點D的對應點為D′,當四邊形AA′C′C是菱形時,求此時平移后的拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與
軸正半軸相交,其頂點坐標為
,下列結論:①
;②
;③
;④方程
有兩個相等的實數根,其中正確的結論是________.(只填序號即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1;
(2)分別連結AB1、BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一面靠墻的空地上用長24m的籬笆,圍成中間隔有兩道籬笆的長方形花圃,設花圃的一邊AB為x(m),面積S(m2).
(1)求S與x之間的函數關系式,并直接寫出自變量x的取值范圍;
(2)若墻的最大可用長度為8m,求圍成花圃的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在單位長度為1的正方形網格中,一段圓弧經過網格的交點A、B、C.
(1)請完成如下操作:
①以點O為坐標原點、豎直和水平方向為軸、網格邊長為單位長,建立平面直角坐標系;、诟鶕䦂D形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請在(1)的基礎上,完成下列填空:
①寫出點的坐標:C 、D ;
②⊙D的半徑= (結果保留根號);
③若E(7,0),試判斷直線EC與⊙D的位置關系,并說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在矩形ABCD中,對角線AC,BD相交于點O.
(1)過點O作OE⊥BC于點E,連接DE交OC于點F,作FG⊥BC于G點,則△ABC與△FGC是位似圖形嗎?若是,請說出位似中心,并求出位似比;若不是,請說明理由.
(2)連接DG交AC于點H,作HI⊥BC于I,試確定的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com